Drilling Through Fractured Gas Bearing Formation to Access Previously Inaccessible Parts of an Offshore Reservoir in Abu Dhabi Using Pressurized Mud Cap Drilling - Case Study

2021 ◽  
Author(s):  
Omar Nazih Jadallah ◽  
Mujahed Saleh ◽  
Mohamed Rebbou Benberber ◽  
Upadhyay Arvind ◽  
Zhanibek Diltaiyev ◽  
...  

Abstract Drilling through fractured gas bearing formations to access the oil reserves underneath has been one of the most challenging tasks for the drilling Team due to the embedded risks such as; total circulation losses, Gas migration, well control issues, hole instability, cutting beds accumulation and stuck pipe. This paper explains an approach in drilling fractured gas bearing formations that was performed for the first time in offshore Abu Dhabi field-A, Pressurized Mud Cap Drilling (PMCD). Drilling through fractured Gas bearing formation causes the loss of the mud column and the consequent intrusion of hydrocarbon gas to the wellbore, thus initiating well control response, which adds to the flat time and might cause cutting slippage, stuck pipe and eventually loss of well objective. PMCD is best suited to deal with such situation, as it allows drilling to continue under the mentioned circumstances by filling the well with sacrificial fluid while the well is closed, fractures take seawater, cuttings and the formations pressure lefts the underbalanced annular fluid to reduce losses volume. Two wells were drilled successfully using the PMCD technique in Field A where the anticipated fracture gas bearing formations system was encountered shortly below the 9-5/8″ casing shoe. The performance increased substantially in the second well as lessons learnt were implemented to avoid any time loss. Drilling the 8-1/2″ Hole section started in well #2 conventionally with required 200 psi overbalance mud weight, the drilling fluid system is directly changed to sacrificial fluid (Sea water) once the fracture system is hit and total losses observed. A light Annular mud (Seawater) is pumped in the well's annulus. After having stable PMCD parameters, drilling continued at an ROP of 100-150 FPH. TQ & Drag real-time monitoring & intermittent pumping of 3 × 50 bbls weighted HVP to clean bit & BHA from cuttings were essential to avoid getting the pipe mechanically stuck. The 6,710 ft section was drilled successfully, Striped BHA Out of hole, Ran 7,160 ft of 7″ Liner, perform cement Job & achieved isolation. Comparing with offset wells drilling conventionally in field-A through the gas bearing fractured zone, PMCD saved +/− 44 days of the well time, cost and achieved the target. and greatly improved the operational safety by providing closed-loop drilling. The PMCD application on the two wells is the first of its type in offshore Abu Dhabi, it allowed accessing parts of the reservoir that have been inaccessible due to the fracture system. Additionally, it increased safety of operation & saved rig days that would have been spent in treating losses and well control operation. Pressurized Mud Cap Drilling application in field-A provides a solution for a wider implementation in developing fractured gas cap resources in future.

2015 ◽  
Vol 8 (1) ◽  
pp. 149-154 ◽  
Author(s):  
Jun Gu ◽  
Ju Huang ◽  
Su Zhang ◽  
Xinzhong Hu ◽  
Hangxiang Gao ◽  
...  

The purpose of this study is to improve the cementing quality of shale gas well by mud cake solidification, as well as to provide the better annular isolation for its hydraulic fracturing development. Based on the self-established experimental method and API RP 10, the effects of mud cake solidifiers on the shear strength at cement-interlayer interface (SSCFI) were evaluated. After curing for 3, 7, 15 and 30 days, SSCFI was remarkably improved by 629.03%, 222.37%, 241.43% and 273.33%, respectively, compared with the original technology. Moreover, the compatibility among the mud cake solidifier, cement slurry, drilling fluid and prepad fluid meets the safety requirements for cementing operation. An application example in a shale gas well (Yuanye HF-1) was also presented. The high quality ratio of cementing quality is 93.49% of the whole well section, while the unqualified ratio of adjacent well (Yuanba 9) is 84.46%. Moreover, the cementing quality of six gas-bearing reservoirs is high. This paper also discussed the mechanism of mud cake solidification. The reactions among H3AlO42- and H3SiO4- from alkali-dissolved reaction, Na+ and H3SiO4- in the mud cake solidifiers, and Ca2+ and OH- from cement slurry form the natrolite and calcium silicate hydrate (C-S-H) with different silicate-calcium ratio. Based on these, SSCFI and cementing quality were improved.


2021 ◽  
Vol 73 (05) ◽  
pp. 63-64
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 203147, “Investigating Hole-Cleaning Fibers’ Mechanism To Improve Cutting Carrying Capacity and Comparing Their Effectiveness With Common Polymeric Pills,” by Mohammad Saeed Karimi Rad, Mojtaba Kalhor Mohammadi, SPE, and Kourosh Tahmasbi Nowtarki, International Drilling Fluids, prepared for the 2020 Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, held virtually 9–12 November. The paper has not been peer reviewed. Hole cleaning in deviated wells is more challenging than in vertical wells because of the boycott effect or the eccentricity of the drillpipe. Poor hole cleaning can result in problems such as borehole packoff or excessive equivalent circulating density. The complete paper investigates a specialized fibrous material (Fiber 1) for hole-cleaning characteristics. The primary goal is to identify significant mechanisms of hole-cleaning fibers and their merits compared with polymeric high-viscosity pills. Hole-Cleaning Indices Based on a review of the literature, most effective parameters regarding hole cleaning in different well types were investigated. These parameters can be classified into the following five categories: - Well design (e.g., hole angle, drillpipe eccentricity, well trajectory) - Drilling-fluid properties (e.g., gel strength, mud weight) - Formation properties (e.g., lithology, cutting specific gravity, cuttings size and shape) - Hydraulic optimizations (e.g., flow regime, nozzle size, number of nozzles) - Drilling practices (e.g., drillpipe rotation speed, wellbore tortuosity, bit type, rate of penetration, pump rate) In this research, rheological parameters and parameters of the Herschel-Bulkley rheological model are considered to be optimization inputs to increase hole-cleaning efficiency of commonly used pills in drilling operations. The complete paper offers a detailed discussion of both the importance of flow regime and the role of the Herschel-Bulkley rheological model in reaching a better prognosis of drilling-fluid behavior at low shear rates. The properties of the fibrous hole-cleaning agent used in the complete paper are provided in Table 1. Test Method Two series of tests were performed. The medium of the first series is drilling water, with the goal of evaluating the efficiency of Fiber 1 in fresh pills. The second series of tests was per-formed with a simple polymeric mud as a medium common in drilling operations. Formulations and rheological properties of both test series are provided in Tables 4 and 5 of the complete paper, respectively.


2021 ◽  
Author(s):  
Gabe Manescu ◽  
Balazs Veer ◽  
Panamarathupalayam Balakrishnan ◽  
Carmelo Arena ◽  
Benoit Allias ◽  
...  

2020 ◽  
Author(s):  
Michael Liem ◽  
Tonny Regensburg-Tuïnk ◽  
Christiaan Henkel ◽  
Hans Jansen ◽  
Herman Spaink

Abstract Objective: Currently the majority of non-culturable microbes in sea water are yet to be discovered, Nanopore offers a solution to overcome the challenging tasks to identify the genomes and complex composition of oceanic microbiomes. In this study we evaluate the utility of Oxford Nanopore Technologies (ONT) sequencing to characterize microbial diversity in seawater from multiple locations. We compared the microbial species diversity of retrieved environmental samples from two different locations and time points.Results: With only three ONT flow cells we were able to identify thousands of organisms, including bacteriophages, from which a large part at species level. It was possible to assemble genomes from environmental samples with Flye. In several cases this resulted in >1 Mbp contigs and in the particular case of a Thioglobus singularis species it even produced a near complete genome. k-mer analysis reveals that a large part of the data represents species of which close relatives have not yet been deposited to the database. These results show that our approach is suitable for scalable genomic investigations such as monitoring oceanic biodiversity and provides a new platform for education in biodiversity.


2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Felipe Chagas ◽  
Paulo R. Ribeiro ◽  
Otto L. A. Santos

Abstract The demand for energy has increased recently worldwide, requiring new oilfield discoveries to supply this need. Following this demand increase, challenges grow in all areas of the petroleum industry especially those related to drilling operations. Due to hard operational conditions found when drilling complex scenarios such as high-pressure/high-temperature (HPHT) zones, deep and ultradeep water, and other challenges, the use nonaqueous drilling fluids became a must. The reason for that is because this kind of drilling fluid is capable to tolerate these extreme drilling conditions found in those scenarios. However, it can experience changes in its properties as a result of pressure and temperature variations, requiring special attention during some drilling operations, such as the well control. The well control is a critical issue since it involves safety, social, economic, and environmental aspects. Well control simulators are a valuable tool to support well control operations and preserve the well integrity, verifying operational parameters and to assist drilling engineers in the decision-making process during well control operations and kick situations. They are also important computational tools for rig personnel training. This study presents well control research and development contributions, as well as the results of a computational well control simulator that applies the Driller's method and allows the understanding the thermodynamic behavior of synthetic drilling fluids, such as n-paraffin and ester base fluids. The simulator employed mathematical correlations for the drilling fluids pressure–volume–temperature (PVT) properties obtained from the experimental data. The simulator results were compared to a test well data set as well to the published results from other kick simulators.


2019 ◽  
Vol 11 (6) ◽  
pp. 1691 ◽  
Author(s):  
Abdullah Kaya ◽  
M. Tok ◽  
Muammer Koc

The Emirate of Abu Dhabi heavily relies on seawater desalination for its freshwater needs due to limited available resources. This trend is expected to increase further because of the growing population and economic activity, the rapid decline in limited freshwater reserves, and the aggravating effects of climate change. Seawater desalination in Abu Dhabi is currently done through thermal desalination technologies, such as multi-stage flash (MSF) and multi-effect distillation (MED), coupled with thermal power plants, which is known as co-generation. These thermal desalination methods are together responsible for more than 90% of the desalination capacity in the Emirate. Our analysis indicates that these thermal desalination methods are inefficient regarding energy consumption and harmful to the environment due to CO2 emissions and other dangerous byproducts. The rapid decline in the cost of solar Photovoltaic (PV) systems for energy production and reverse osmosis (RO) technology for desalination makes a combination of these two an ideal option for a sustainable desalination future in the Emirate of Abu Dhabi. A levelized cost of water (LCW) study of a solar PV + RO system indicates that Abu Dhabi is well-positioned to utilize this technological combination for cheap and clean desalination in the coming years. Countries in the Sunbelt region with a limited freshwater capacity similar to Abu Dhabi may also consider the proposed system in this study for sustainable desalination.


Author(s):  
Fernando S. Flores-Avila ◽  
John Rogers Smith ◽  
Adam T. Bourgoyne ◽  
Darryl A. Bourgoyne

This study measured the liquid fallback during simulated blowout conditions. The purpose of the study was to establish a basis for developing a procedure for controlling blowouts that relies on the accumulation of liquid kill fluid injected while the well continues to flow. The results from full-scale experiments performed with natural gas and water based drilling fluid in a vertical 2787-foot deep research well are presented. The results show that the critical velocity that prevents control fluid accumulation can be predicted by adapting Turner’s model of terminal velocity based on the liquid droplet theory to consider the flow conditions, velocity and properties of the continuous phase when determining the drag coefficient. Similarly, the amount of liquid that flows countercurrent into and accumulates in the well can be predicted based on the concept of zero net liquid flow (ZNLF) holdup.


2010 ◽  
Author(s):  
Ahmed Mohamed Dawoud ◽  
Ahmed El Mahdi ◽  
Curt R. Bidinger ◽  
Mahmoud Basioni ◽  
Mohammed Ramadan Ayoub ◽  
...  

2020 ◽  
Author(s):  
Michael Liem ◽  
A.J.G. Regensburg-Tuïnk ◽  
C.V. Henkel ◽  
H.P. Spaink

Abstract Objective Currently the majority of non-culturable microbes in sea water are yet to be discovered, Nanopore offers a solution to overcome the challenging tasks to identify the genomes and complex composition of oceanic microbiomes. In this study we evaluate the utility of Oxford Nanopore Technologies (ONT) sequencing to characterize microbial diversity in seawater from multiple locations. We compared the microbial species diversity of retrieved environmental samples from two different locations and time points. Results With only three ONT flow cells we were able to identify thousands of organisms, including bacteriophages, from which a large part at species level. It was possible to assemble genomes from environmental samples with Flye. In several cases this resulted in >1 Mbp contigs and in the particular case of a Thioglobus singularis species it even produced a near complete genome. k-mer analysis reveals that a large part of the data represents species of which close relatives have not yet been deposited to the database. These results show that our approach is suitable for scalable genomic investigations such as monitoring oceanic biodiversity and provides a new platform for education in biodiversity.


2016 ◽  
Vol 53 (4) ◽  
pp. 229-258
Author(s):  
Sébastien Blanchard ◽  
Tracy Frank ◽  
Christopher Fielding

Laterally extensive beds of dolomitized carbonate are found interbedded with eolian to peritidal sandstones in the hydrocarbon-producing Pennsylvanian to earliest Permian successions of the Wyoming Shelf, USA. Subsurface and surface correlations often rely on these dolomite intervals yet their origin is poorly constrained. To characterize the nature of dolomitization, we integrate petrography, carbon and oxygen isotope data, and sedimentological characteristics of pervasively dolomitized shallow-marine, supratidal, and pedogenic facies in the Amsden and Tensleep Formations of the Bighorn Basin (early to middle Pennsylvanian, northern Wyoming). Stable isotopic compositions are compared with the documented isotopic signature of protodolomite forming on present-day arid coastlines. The composition of fine- to medium-grained dolomitized matrix differs from that of late-stage calcite spars, suggesting that dolomites preserve a primary or early diagenetic signal. The δ18O values of dolomites (-1.2 to 7.6‰ VPDB) display a similar range to that of modern protodolomite forming in the tidal flats of the coast of Abu Dhabi. The δ13C values, however, are consistently lower than expected if dolomite had precipitated from sea-water. These relationships suggest that dolomite incorporated a considerable amount of isotopically light carbon during primary formation or later during overgrowth and/or recrystallization of the initial protodolomite. Pennsylvanian and earliest Permian successions in Wyoming, Montana, and northeastern Utah display very similar diagenetic modifications (i.e., pervasive dolomitization, evaporite replacement, silicification), suggesting that the models discussed here may be applicable to these contemporaneous formations.


Sign in / Sign up

Export Citation Format

Share Document