A Water-Base Drilling Fluid for Controlling Deep-Reservoir Extreme Conditions in an Abu Dhabi Gas Shale Play

Author(s):  
Gabe Manescu ◽  
Balazs Veer ◽  
Panamarathupalayam Balakrishnan ◽  
Carmelo Arena ◽  
Benoit Allias ◽  
...  
2021 ◽  
Vol 73 (05) ◽  
pp. 63-64
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 203147, “Investigating Hole-Cleaning Fibers’ Mechanism To Improve Cutting Carrying Capacity and Comparing Their Effectiveness With Common Polymeric Pills,” by Mohammad Saeed Karimi Rad, Mojtaba Kalhor Mohammadi, SPE, and Kourosh Tahmasbi Nowtarki, International Drilling Fluids, prepared for the 2020 Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, held virtually 9–12 November. The paper has not been peer reviewed. Hole cleaning in deviated wells is more challenging than in vertical wells because of the boycott effect or the eccentricity of the drillpipe. Poor hole cleaning can result in problems such as borehole packoff or excessive equivalent circulating density. The complete paper investigates a specialized fibrous material (Fiber 1) for hole-cleaning characteristics. The primary goal is to identify significant mechanisms of hole-cleaning fibers and their merits compared with polymeric high-viscosity pills. Hole-Cleaning Indices Based on a review of the literature, most effective parameters regarding hole cleaning in different well types were investigated. These parameters can be classified into the following five categories: - Well design (e.g., hole angle, drillpipe eccentricity, well trajectory) - Drilling-fluid properties (e.g., gel strength, mud weight) - Formation properties (e.g., lithology, cutting specific gravity, cuttings size and shape) - Hydraulic optimizations (e.g., flow regime, nozzle size, number of nozzles) - Drilling practices (e.g., drillpipe rotation speed, wellbore tortuosity, bit type, rate of penetration, pump rate) In this research, rheological parameters and parameters of the Herschel-Bulkley rheological model are considered to be optimization inputs to increase hole-cleaning efficiency of commonly used pills in drilling operations. The complete paper offers a detailed discussion of both the importance of flow regime and the role of the Herschel-Bulkley rheological model in reaching a better prognosis of drilling-fluid behavior at low shear rates. The properties of the fibrous hole-cleaning agent used in the complete paper are provided in Table 1. Test Method Two series of tests were performed. The medium of the first series is drilling water, with the goal of evaluating the efficiency of Fiber 1 in fresh pills. The second series of tests was per-formed with a simple polymeric mud as a medium common in drilling operations. Formulations and rheological properties of both test series are provided in Tables 4 and 5 of the complete paper, respectively.


1997 ◽  
Vol 12 (03) ◽  
pp. 158-162 ◽  
Author(s):  
Julianne Elward-Berry ◽  
J.B. Darby

1996 ◽  
Vol 47 (6) ◽  
pp. 307-316 ◽  
Author(s):  
O. S. Shokoya ◽  
M. A. Al-Marhoun ◽  
O. A. Ashiru
Keyword(s):  

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Hassan A. Alwan

The aim of this project is to remove or eliminate the effect of the highly toxic gas of H2S on the health of personal, environment, drilling fluid reology, and drilling equipment materials by adding an economic mixture of sulphide scavengers to the contaminated drilling fluid. In this research mixture of 14.7 gm/l of iron oxide in the form of magnetite (Fe3O4) and 14.7 gm/l of ferrous oxalate Fe(C2O4), which cost is 1.3 US$ per 1kg of mixture, was used to remove the all forms of soluble sulphides (H2S, HS-, S2-) from water-base drilling fluid. The Fe3O4 reacts with dissolved H2S and the reaction carry on fast at pH below 8, while Fe(C2O4) reacts with HS-, S2- and this reaction proceed at high rate at pH above 8. Both reactions produce insoluble iron sulphides. The chemical analysis showed that the soluble species of sulphides in the drilling fluid, which its pH was 7.9, were present as dissolved H2S gas and as bisulphide ions (HS-). The analysis also explained that the total concentration of these sulphides in the drilling fluid was 3000 ppm. The results of treatment of contaminated fluid showed that all forms of sulphides were removed from drilling fluid after adding the mixture of scavengers to the contaminated fluid. The results also explained that the drilling fluid reology recovered after removing the soluble sulphides, which were the main factors that effect on the drilling fluid reology, from the drilling fluid.


Author(s):  
Ghufran Falih ◽  
Nada S. Al-Zubaidi ◽  
Asawer A. Al-Wasiti

The effect of lignite on the filtration characteristics of water base mud was studied at low and high temperature. Recently, the nanoparticle additives are studied and investigated as alternative additives due to its stability during drilling even at high-temperature and high-pressure (HTHP) conditions. In this study the effect of nano particles size of Lignite on filtrate volume and mud cake thickness was investigated , at different weights (0.01, 0.05, 0.07, 0.1, and 0.2) gm, in (API WBM, Polymer mud, DURA THERM mud, and Saturated Salt Water mud) and different temperatures (35, 75, and 100) oC. The results show that most tests provided a very good filtration control for the used drilling fluids at 100 oC. Better performances were observed in polymer and Saturated Salt Water mud at 100 oC with Lignite concentration of 0.01 gm and 0.1 gm, and filtrate volume reduction 52.5 % and 60 % respectively.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Dongyu Qiao ◽  
Zhongbin Ye ◽  
Lei Tang ◽  
Yiping Zheng ◽  
Xindong Wang ◽  
...  

The high-temperature stability and filtration property controlling of ultra-high-temperature water-based drilling fluids is a worldwide problem. To resolve this problem, a high-temperature-resistant quaternary copolymer (HTRTP) was synthesized based on molecular structure optimization design and monomer optimization. The physical and chemical properties were characterized by infrared spectroscopy, thermal weight, and spectrophotometry, and their temperature and salt resistance was evaluated in different drilling fluids, combined with adsorption, particle size analysis, and stability test. The results show that the thermal stability of HTRTP is very strong, and the initial temperature of thermal decomposition is above 320°C. The salt resistance of HTRTP is more than 162 g/L, and the calcium resistance is more than 5000 mg/L, which is equivalent to the foreign temperature-resistant polymer DCL-a, and is superior to the domestic metal ion viscosity increasing fluid loss agent PMHA-II for drilling fluids. It has excellent high-temperature resistance (245°C) and fluid loss reduction effect in fresh water base mud, fresh water weighted base mud, saturated brine base mud, and composite salt water base mud, which is better than foreign DCL-a (245°C) and domestic PMHA (220°C). The adsorption capacity of HTRTP on clay particles is large and firm, and the adsorption capacity changes little under the change of chemical environment and temperature. Both before and after HTRTP aging (245°C/16 h), the permeability of filter cake can be significantly reduced and its compressibility can be improved. By optimizing the particle size gradation of the drilling fluid and enhancing the colloid stability of the system, HTRTP can improve the filtration building capacity of the drilling fluid and reduce the filtration volume. The development of antithermal polymer provides a key treatment agent for the study of anti-high-temperature-resistant saline-based drilling fluid.


2021 ◽  
Author(s):  
Abdelhak Ladmia ◽  
Martin Culen ◽  
Abdulla Bakheet Al Katheeri ◽  
Fahad Mustfa Al Hosani ◽  
Graham F. Edmonstone ◽  
...  

Abstract Coiled Tubing Drilling (CTD) has been growing and developed rapidly through the last two decades. There have been numerous highly successful applications of CTD technology in Alaska, Canada, Oman and the United Arab Emirates (Sharjah Sajaa and Dubai Murgham fields), among other places. Currently, Saudi Arabia has undertaken a campaign for the last seven years that has shown successful results in gas reservoirs. ADNOC initiated a trial Coiled Tubing Underbalanced Drilling (CTUBD) project in the onshore tight gas reservoirs in Abu Dhabi, United Arab Emirates beginning operations 1-December-2019. The initial trial will consist of three (3) wells. The purpose of the trial is to assess the suitability of CTUBD for drilling the reservoir sections of wells in these fields, and further application in others. The reason for choosing coiled tubing for drilling the reservoir sections is based upon the high H2S content of the reservoir fluids and the premise that HSE can be enhanced by using a closed drilling system rather than an open conventional system. The three wells will be newly drilled, cased and cemented down to top reservoir by a conventional rig. The rig will run the completion and Christmas tree before moving off and allowing the coiled tubing rig to move onto the well. The coiled tubing BOPs will be rigged up on top of the Christmas tree and a drilling BHA will be deployed through the completion to drill the reservoir lateral. The wells will be drilled underbalanced to aid reservoir performance and to allow hole cleaning with returns being taken up the coiled tubing / tubing annulus. The returns will be routed to a closed separation system with produced gas and condensate being primarily exported to the field plant via the production line, solids sparge to a closed tank or pit and the drilling fluid re-circulated. The primary drilling fluid will be treated water; however, nitrogen may be required for drilling future wells in the field and will be required regardless for purging gas from the surface equipment during operations. A flare will also be required for emergency use and for start-up of drilling. If the trial proves a success, a continuous drilling plan will be put in place.


Sign in / Sign up

Export Citation Format

Share Document