Migration to Cased Hole Petrophysics: Are We Ready?

2021 ◽  
Author(s):  
Ulises Bustos ◽  
Carlos Duran ◽  
Alexander Duarte ◽  
Alfonso Salguero ◽  
Yira Vasquez ◽  
...  

Abstract In the present Oil & Gas business context, the uncertainties reduction for hydrocarbon production increase in an operational costs and risk reduction scheme, are among the main drivers in several operating companies in the northern region of South America (Colombia & Ecuador). Electrical logging and drilling tools stuck events due to differential pressures, fishing operations, high wellbore tortuosity, difficult geometries and unconsolidated formations affecting wellbore stability, are among the main problems increasing non-productive time and operating costs. Minimizing open hole operations with a full migration to cased hole data acquisition, providing inputs for petrophysical uncertainty reductions without jeopardizing well completion decisions or initial reservoir characterization, would constitute an attractive solution for operators. Following those initiatives, we start by achieving a complete open hole formation evaluation and then migrating to case hole data acquisition and petrophysical assessment while benchmarking against open hole results. Low and variable formation water salinity, complex mineralogy's affecting resistivity and radioactive minerals, are common petrophysical challenges in our reservoirs. We had to implement Archie and salinity-independent formation evaluation solutions with cased hole technologies and in absence of open hole logs. The open hole petrophysics consist on simultaneous assessment of matrix and fluids saturations, while evaluating the oil mobility and water cut with the incorporation of multi-depth of investigation sensors in single logging runs (spectroscopy, dielectric dispersion, and magnetic resonance). We then moved to cased hole formation evaluation, with spectroscopy & nuclear-based petrophysics in gas, light oil, and heavy oil-bearing reservoirs. By implementation of non-archie fluids volumetric computation (that relies on conversion of dry weight total carbon to oil saturation and fast neutron cross section to gas saturation- done through a simultaneous inversion by solving matrix-porosity-fluids volumes into an elemental analysis), we obtained a representative formation saturation range behind casing. We then discussed on the different scenarios were migrating to cased hole is sustainable and its potential limitations.

2007 ◽  
Author(s):  
Per Cato Berg ◽  
Erik Sandtorv Pedersen ◽  
Aashild Lauritsen ◽  
Nader Behjat ◽  
Siri Hagerup-Jenssen ◽  
...  

2021 ◽  
Author(s):  
Rafael Zambrano ◽  
Michael Sadivnyk ◽  
Yevhen Makar ◽  
Chiara Cavalleri ◽  
David Rose

Abstract Formation evaluation using cased-hole logs is a primary option for re-evaluating old wells in brownfields or contingency logging in new wells. Its consistency with a robust open hole evaluation is vital for its future implementation in field development. This work describes detailed open- and cased- hole evaluation workflows integrating different advanced subsurface measurements and alternative interpretation techniques to reduce the uncertainties of deriving the main petrophysical properties across the conventional and tight gas reservoirs in the Dnieper-Donets basin. Since not all open-hole measurements can be recorded behind casing and some of the cased hole logs are not characterized for open hole conditions, it is not always possible to implement the same evaluation techniques for measurements done in open hole and cased hole. Nevertheless, different measurements provide different formation responses that supplement their gaps from one another. A wireline data acquisition strategy has been elaborated to carry out formation evaluation workflows using open- and cased-hole data independently but learning from each other. The methodology is based on novel and non-standard evaluation techniques that use measurements from advanced wireline technology such as nuclear magnetic resonance (NMR) and advanced pulsed neutron spectroscopy logs. The methodology was applied to log data recorded on the Visean and Serpukhovian (Lower Carboniferous) productive gas zones, characterized by porosity (5-15pu) and permeability (0.1-100mD). The principal challenge for the formation evaluation of these reservoirs is deriving an accurate estimation of porosity, which requires removing the gas and matrix effects on the log responses. An inaccurate porosity estimation will result in an inaccurate permeability and water saturation, and the problem worsens in low-porosity rocks. In the open hole, the porosity computation from the Density-Magnetic Resonance (DMR) technique has proven to be more accurate in comparison with common single porosity methods. The same problem is addressed in cased hole conditions with the advanced pulsed neutron spectroscopy logs and a novel technique that combines the thermal neutron elastic scattering and fast neutron cross sections to obtain a gas-free and matrix-corrected porosity, as well as a resistivity independent gas saturation. The consistency of petrophysical properties independently estimated from the two separate workflows add confidence to the approach, and this is reflected in the gas production obtained from the perforated intervals. This script describes in detail the open- and cased- hole formation evaluation workflows and the wireline technology and methodologies applied. Actual examples illustrate the effectiveness of these quantitative approaches in the Dnieper-Donets basin.


2015 ◽  
Vol 3 (1) ◽  
pp. SA135-SA142
Author(s):  
Venkataraman Jambunathan ◽  
FNU Suparman ◽  
Zhipeng Liu ◽  
Weijun Guo ◽  
Daniel Dorffer

Formation evaluation for mature oil fields remains a challenge for operators. Rock-petrophysical properties present large uncertainties following years of production. Formation evaluation becomes even more challenging when there is a lack of open-hole logging data as is typically the case. Logging programs for cased-hole formation evaluation are limited by the size of the well completion. In addition, a metallic casing often prevents the effective use of electric measurements. However, pulsed-neutron tools (PNTs) are a viable option for mature fields. We developed a brief review of PNT theory. The high-energy neutrons output at a high count rate fit the need of cased-hole applications. Application of pulsed-neutron technology for mature fields and a case history from west Texas, in which pulsed neutron technology was used to determine remaining oil saturation are discussed. We documented the best practice for data acquisition and the processing workflow. Having a good collaboration between operator and service provider helps to better understand the logging objectives and in job planning, which is important for the success of the logging operation.


2016 ◽  
Author(s):  
Pranav Dubey ◽  
Adrian Okpere ◽  
Gideon Sanni ◽  
Ifeanyi Onyeukwu

ABSTRACT An optimized completion design that addresses gaps in the existing single well Producer-Injector (P-I) concept is presented in this paper. Field development scenarios based on the optimized P-I concept and conventional waterflood were implemented in full-field 3D simulation models. Detailed review of the existing single P-I well concept revealed gaps in the completion design with regards to feasibility of data acquisition, ease of well intervention and well safety/control. The existing design utilizes a Single-String-Single (SSS) design with through-tubing water injection and oil production through annulus, whilst the optimized design is a Two-String-Dual (TSD) incorporating the flexibility of independent injection/production, zonal isolation for interventions & data acquisition and additional safety completion jewelries. A fit-for-purpose reservoir candidate was selected by assessing it's suitability to waterflooding. The reservoir belongs to the paralic sequence of the Agbada Formation of the Niger Delta basin – a sequence of interbedded sandstones and shales. The reservoir is an elongated anticline bounded by W-E oriented faults and exhibiting channelized shoreface sediments. Porosity and permeability ranges are 17-31% and 200mD-2200mD respectively. Shale baffles strongly reduces the influence of the aquifer hence the simulation model is an oil reservoir with weak aquifer completed by the P-I well producing oil and injecting into the aquifer in tandem. Performance of the single P-I well strategy was benchmarked against conventional waterflood patterns to effectively capture the recovery efficiency and production forecast for each scenario. Results from the five-parameter experimental design based on the P-I strategy, indicate Ultimate Oil Recovery is most impacted by horizontal permeability; injection rate, flow barrier transmissibility and vertical permeability with the least influence. Dynamic 3D water saturation maps show the waterflood front propagating principally in the horizontal direction from the injector, providing important reservoir boundary pressure support and minimizing the chance for injected water short-circuiting at the sandface. Ultimate Oil Recovery of 5spot/line drive patterns and the P-I strategy were similar, 54% and 52% respectively. Well completion costs and forecasts were fed into simple economics spreadsheet to test which technique provides the most value. Open book economics results showed the P-I concept provides better value (NPV 23.0 and VIR 0.67) than 5 spot and line drive patterns (NPV-17 and VIR-0.14).


2013 ◽  
Author(s):  
Wang Feng ◽  
Changyu Liu ◽  
Yingan Zhang ◽  
Yong Wang ◽  
Hai Liu ◽  
...  

2016 ◽  
Author(s):  
P. J. Williams ◽  
T. Mayor ◽  
A. Pereira ◽  
S. Lawrance ◽  
J. R. Samworth ◽  
...  

2013 ◽  
Vol 152 ◽  
pp. 74-82 ◽  
Author(s):  
Yasuhiro Tsujimoto ◽  
Yukiyo Yamamoto ◽  
Keiichi Hayashi ◽  
Alhassan I. Zakaria ◽  
Yahaya Inusah ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document