Inventory Verification in Underground Gas Storage Rebuilt from Depleted Gas Reservoir: A Case Study from China

2021 ◽  
Author(s):  
Lina Song ◽  
Hongcheng Xu ◽  
Qiqi Wanyan ◽  
Wei Liao ◽  
Shijie Zhang ◽  
...  

Abstract Inventory verification is one of vital tasks in underground gas storage (UGS) management process. For one reason, it is possible to know exactly how much natural gas is actually in the gas storage and ensure that it can be produced and supplied to the market in winter season when needed. For another, possible natural gas leakage can be discovered in time by inventory verification, to ensure the safe and economic operation of the gas storage. HTB UGS is a gas storage facility rebuilt from a depleted gas reservoir in China, which has been commissioning in June 2013. After 7 years injection-withdrawal cycles, we calculated and analyzed the inventory of this gas storage. First and foremost, we analyzed the data of 13 observation wells, including monitoring of gas-water interface, caprocks, and faults of the HTB UGS. In addition, we carried out core experiments in the laboratory to simulate the multi-cycle injection and withdrawal of gas storage, and analyzed the microscopic pore seepage characteristics of the reservoir during the UGS operation. Next, based on the operating pressure test data of the gas storage, we corrected the formation pressure and calculated the effective inventory. Furthermore, combined with the simulation results that we have carried out in the previous period, the effective inventory of HTB UGS was comprehensively evaluated. The result shows that: 1) The complete monitoring system indicates that the HTB UGS has no gas escaping from the storage field through faults, caprocks or wellbore. 2) The experimental result shows that in the process of gas withdrawal, various forms of natural gas such as jams and bypasses in some areas of the reservoir cannot participate in the flow, leading to this part of natural gas cannot be used. 3) Inventory calculation shows that as of the end of gas withdrawal in March 2020, the book inventory of HTB UGS is 99.8×108m3,while the effective inventory is 91.8×108m3 and the working gas is 39.9×108m3. 4) By acidification or other measures to improve the geological conditions, intensifying the well pattern and extending the gas production time, HTB UGS can increase its effective inventory. With the great efforts in constructing underground gas storage in China and the market-oriented operation of UGS, inventory verification of gas storage will become increasingly important. The inventory analysis method established in this article can provide a certain reference.

2021 ◽  
Author(s):  
Hongbo Huo ◽  
Jinman Li ◽  
Zhong Li ◽  
Xiaocheng Zhang ◽  
Shiming He ◽  
...  

Abstract Objectives/Scope Compared with the underground nature gas storage (UNGS) onshore, the offshore UNGS is further from residential areas and industrial areas, which can shave the peak of natural gas more safely. However, the investment of offshore engineering is higher. Offshore UNGS with reusing offshore depleted gas reservoir construction can not only solves the problems of offshore engineering structure and wells abandonment but also greatly reduces the investment. Methods, Procedures, Process According to the experience of UNGS onshore, the following factors were considered: reservoir buried depth, working gas volume, distance from land, etc. Based on one depleted gasfield in Bohai Bay, the feasibility analysis of an UNGS was carried out, the impact of the offshore UNGS on the environment, the sealing of the underground gas trap and the integrity of the wellbore were evaluated, and the result proves that the sealing of the underground gas trap of the gas field was good. The natural gas pipeline network subsea can provide transportation for the UNGS and compatible to be transformed into the offshore UNGS. However, for one thing, the poor wellbore integrity conditions and imperfect well pattern constraint the reusing, for another, the capacity of offshore facilities need to be improved. Results, Observations, Conclusions According to the economic evaluation, the investment of offshore depleted gas reservoir reusing as UNGS can be reduced by 56% compared with the construction of a new onshore UNGS, and 32% compared with the offshore gas field abandon. A new idea is provided for peak shaving of natural gas, greatly reducing the investment in gas storage construction. Experience has been accumulated by the feasibility analysis of offshore depleted gas field UNGS and that has a bright future. Novel/Additive Information The limitation of natural conditions on project construction, contingency plans for force majeure such as sea ice, storm and earthquake, etc are necessary to be considered, and its implementation still needs the support of the government and relevant non-governmental organizations


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 576 ◽  
Author(s):  
Cheng Cao ◽  
Jianxing Liao ◽  
Zhengmeng Hou ◽  
Hongcheng Xu ◽  
Faisal Mehmood ◽  
...  

Underground gas storage reservoirs (UGSRs) are used to keep the natural gas supply smooth. Native natural gas is commonly used as cushion gas to maintain the reservoir pressure and cannot be extracted in the depleted gas reservoir transformed UGSR, which leads to wasting huge amounts of this natural energy resource. CO2 is an alternative gas to avoid this particular issue. However, the mixing of CO2 and CH4 in the UGSR challenges the application of CO2 as cushion gas. In this work, the Donghae gas reservoir is used to investigate the suitability of using CO2 as cushion gas in depleted gas reservoir transformed UGSR. The impact of the geological and engineering parameters, including the CO2 fraction for cushion gas, reservoir temperature, reservoir permeability, residual water and production rate, on the reservoir pressure, gas mixing behavior, and CO2 production are analyzed detailly based on the 15 years cyclic gas injection and production. The results showed that the maximum accepted CO2 concentration for cushion gas is 9% under the condition of production and injection for 120 d and 180 d in a production cycle at a rate of 4.05 kg/s and 2.7 kg/s, respectively. The typical curve of the mixing zone thickness can be divided into four stages, which include the increasing stage, the smooth stage, the suddenly increasing stage, and the periodic change stage. In the periodic change stage, the mixed zone increases with the increasing of CO2 fraction, temperature, production rate, and the decreasing of permeability and water saturation. The CO2 fraction in cushion gas, reservoir permeability, and production rate have a significant effect on the breakthrough of CO2 in the production well, while the effect of water saturation and temperature is limited.


2008 ◽  
Author(s):  
Reza Azin ◽  
Amir Nasiri ◽  
Ali Jodeyri Entezari ◽  
Gholam Hossein Montazeri

2020 ◽  
Vol 12 (2) ◽  
pp. 271 ◽  
Author(s):  
Petr Rapant ◽  
Juraj Struhár ◽  
Milan Lazecký

Underground gas storage facilities are an important element of the natural gas supply system. They compensate for seasonal fluctuations in natural gas consumption. Their expected lifetime is in tens of years. Continuous monitoring of underground gas storage is therefore very important to ensure its longevity. Periodic injection and withdrawal of natural gas can cause, among other things, vertical movements of the terrain surface. Radar interferometry is a commonly used method for tracking changes in the terrain height. It can register even relatively small height changes (mm/year). The primary aim of our research was to verify whether terrain behavior above a relatively deep underground gas storage can be monitored by this method and to assess the possibility of detecting the occurrence of anomalous terrain behavior in an underground gas storage area such as reactivation of faults in the area. The results show a high correlation between periodic injection and withdrawal of natural gas into/from the underground reservoir and periodic changes in terrain height above it (the amplitude of the height changes is in centimeters), which may allow the detection of anomalous phenomena. We documented special behavior of storage structures in the Vienna Basin: the areas adjacent to the underground gas storages show exactly the opposite phase of vertical movements, i.e., while the terrain above the underground reservoirs rises as natural gas is injected, the adjacent areas subside, and vice versa. Based on the analysis of geological conditions, we tend to conclude that this behavior is conditioned by the tectonic fault structure of the studied area.


2020 ◽  
pp. 51-55
Author(s):  
F. A. Nurmammadli

A significant role in ensuring the reliability of gas supply is played by underground gas storages, which are the most cost-effective objects for reserving natural gas. With all the originality of solving the issues of gas supply reliability by constructing underground gas storage in depleted gas condensate, gas and oil fields and aquifers, which are traditional methods, the absence of such geological conditions necessitates searching for other, unconventional methods of creating underground gas storages.


Sign in / Sign up

Export Citation Format

Share Document