scholarly journals Utilization of CO2 as Cushion Gas for Depleted Gas Reservoir Transformed Gas Storage Reservoir

Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 576 ◽  
Author(s):  
Cheng Cao ◽  
Jianxing Liao ◽  
Zhengmeng Hou ◽  
Hongcheng Xu ◽  
Faisal Mehmood ◽  
...  

Underground gas storage reservoirs (UGSRs) are used to keep the natural gas supply smooth. Native natural gas is commonly used as cushion gas to maintain the reservoir pressure and cannot be extracted in the depleted gas reservoir transformed UGSR, which leads to wasting huge amounts of this natural energy resource. CO2 is an alternative gas to avoid this particular issue. However, the mixing of CO2 and CH4 in the UGSR challenges the application of CO2 as cushion gas. In this work, the Donghae gas reservoir is used to investigate the suitability of using CO2 as cushion gas in depleted gas reservoir transformed UGSR. The impact of the geological and engineering parameters, including the CO2 fraction for cushion gas, reservoir temperature, reservoir permeability, residual water and production rate, on the reservoir pressure, gas mixing behavior, and CO2 production are analyzed detailly based on the 15 years cyclic gas injection and production. The results showed that the maximum accepted CO2 concentration for cushion gas is 9% under the condition of production and injection for 120 d and 180 d in a production cycle at a rate of 4.05 kg/s and 2.7 kg/s, respectively. The typical curve of the mixing zone thickness can be divided into four stages, which include the increasing stage, the smooth stage, the suddenly increasing stage, and the periodic change stage. In the periodic change stage, the mixed zone increases with the increasing of CO2 fraction, temperature, production rate, and the decreasing of permeability and water saturation. The CO2 fraction in cushion gas, reservoir permeability, and production rate have a significant effect on the breakthrough of CO2 in the production well, while the effect of water saturation and temperature is limited.

2021 ◽  
Author(s):  
Lina Song ◽  
Hongcheng Xu ◽  
Qiqi Wanyan ◽  
Wei Liao ◽  
Shijie Zhang ◽  
...  

Abstract Inventory verification is one of vital tasks in underground gas storage (UGS) management process. For one reason, it is possible to know exactly how much natural gas is actually in the gas storage and ensure that it can be produced and supplied to the market in winter season when needed. For another, possible natural gas leakage can be discovered in time by inventory verification, to ensure the safe and economic operation of the gas storage. HTB UGS is a gas storage facility rebuilt from a depleted gas reservoir in China, which has been commissioning in June 2013. After 7 years injection-withdrawal cycles, we calculated and analyzed the inventory of this gas storage. First and foremost, we analyzed the data of 13 observation wells, including monitoring of gas-water interface, caprocks, and faults of the HTB UGS. In addition, we carried out core experiments in the laboratory to simulate the multi-cycle injection and withdrawal of gas storage, and analyzed the microscopic pore seepage characteristics of the reservoir during the UGS operation. Next, based on the operating pressure test data of the gas storage, we corrected the formation pressure and calculated the effective inventory. Furthermore, combined with the simulation results that we have carried out in the previous period, the effective inventory of HTB UGS was comprehensively evaluated. The result shows that: 1) The complete monitoring system indicates that the HTB UGS has no gas escaping from the storage field through faults, caprocks or wellbore. 2) The experimental result shows that in the process of gas withdrawal, various forms of natural gas such as jams and bypasses in some areas of the reservoir cannot participate in the flow, leading to this part of natural gas cannot be used. 3) Inventory calculation shows that as of the end of gas withdrawal in March 2020, the book inventory of HTB UGS is 99.8×108m3,while the effective inventory is 91.8×108m3 and the working gas is 39.9×108m3. 4) By acidification or other measures to improve the geological conditions, intensifying the well pattern and extending the gas production time, HTB UGS can increase its effective inventory. With the great efforts in constructing underground gas storage in China and the market-oriented operation of UGS, inventory verification of gas storage will become increasingly important. The inventory analysis method established in this article can provide a certain reference.


2021 ◽  
Author(s):  
Hongbo Huo ◽  
Jinman Li ◽  
Zhong Li ◽  
Xiaocheng Zhang ◽  
Shiming He ◽  
...  

Abstract Objectives/Scope Compared with the underground nature gas storage (UNGS) onshore, the offshore UNGS is further from residential areas and industrial areas, which can shave the peak of natural gas more safely. However, the investment of offshore engineering is higher. Offshore UNGS with reusing offshore depleted gas reservoir construction can not only solves the problems of offshore engineering structure and wells abandonment but also greatly reduces the investment. Methods, Procedures, Process According to the experience of UNGS onshore, the following factors were considered: reservoir buried depth, working gas volume, distance from land, etc. Based on one depleted gasfield in Bohai Bay, the feasibility analysis of an UNGS was carried out, the impact of the offshore UNGS on the environment, the sealing of the underground gas trap and the integrity of the wellbore were evaluated, and the result proves that the sealing of the underground gas trap of the gas field was good. The natural gas pipeline network subsea can provide transportation for the UNGS and compatible to be transformed into the offshore UNGS. However, for one thing, the poor wellbore integrity conditions and imperfect well pattern constraint the reusing, for another, the capacity of offshore facilities need to be improved. Results, Observations, Conclusions According to the economic evaluation, the investment of offshore depleted gas reservoir reusing as UNGS can be reduced by 56% compared with the construction of a new onshore UNGS, and 32% compared with the offshore gas field abandon. A new idea is provided for peak shaving of natural gas, greatly reducing the investment in gas storage construction. Experience has been accumulated by the feasibility analysis of offshore depleted gas field UNGS and that has a bright future. Novel/Additive Information The limitation of natural conditions on project construction, contingency plans for force majeure such as sea ice, storm and earthquake, etc are necessary to be considered, and its implementation still needs the support of the government and relevant non-governmental organizations


2011 ◽  
Vol 110-116 ◽  
pp. 3117-3124
Author(s):  
Lei Shi ◽  
Shu Sheng Gao

Underground gas storages (UGS) are widely used to store the excess of produced natural gas during periods of low demand, and relieve the pressure during periods of high demand. Depleted natural gas reservoir is generally the best choice against others. Proper selection of a depleted gas reservoir is essential to the succession, steady and reliability of UGS in the long run. Sealing capacity of caprock is an important index for measuring the performance of gas storage reservoir. In order to analysis feasibility of UGS in JB area, the development characteristics of caprock were studied, the sealing gas effectiveness of caprock was evaluated. it was concluded that the main caprock was the formation of evaporative carbonate platform, and the breakthrough pressure of cap rock was high. The cap rocks with good sealing capacity were distributed in the area between S224 well and S39 well. The sealing ability was comprehensively evaluated by use of the development features and sealing capacity of caprock.


2008 ◽  
Author(s):  
Reza Azin ◽  
Amir Nasiri ◽  
Ali Jodeyri Entezari ◽  
Gholam Hossein Montazeri

Author(s):  
R. M. Kondrat ◽  
L. I. Khaidarova

The application of non-hydrocarbon gases with the aim of displacing residual gas from depleted fields is substantiated. Mathematical modeling is carried out of the process of residual gas displacing with nitrogen in the GEM compositional simulating module under the conditions of a hypothetical gas reservoir of circular shape. The said module is a part of the licensed CMG computer program. The effect of the cyclical nature of the aquifer injection nitrogen into depleted gas reservoir at different rates till the final gas recovery coefficient for residual gas is developed. The study concerns different durations of nitrogen injection cycles into the reservoir (6, 12, 18, 24, 30, and 36 months) and various correlations of the rates of nitrogen injection and gas production in reservoir conditions of 1:1; 1.5:1; 2:1. During the nitrogen injection into the reservoir, the output wells stopped; whereas after surcease of the nitrogen injection, they were again exploited until the reservoir pressure reached to 0.1 Pprimary. Then the process of cyclic nitrogen injection into the layer continued, until nitrogen break through into the producing wells and its content in the produced products reached 5% vol. The research results were processed in the form of graphical dependencies of reservoir pressure, gas flow rate and gas recovery coefficient for residual gas at the end of the cycle of nitrogen injection into the reservoir as a function of the number of such cycles. The research results indicate a significant effect on the gas recovery coefficient for the residual gas of the duration of the cycle of nitrogen injection into the reservoir and the ratio of rates of nitrogen injection and gas production, with an increase in which the coefficient of gas output gradually decreases. According to the research results, the optimal parameters of the process of nitrogen injection into the reservoir should be chosen on the basis of technological results, as well as technical and economic calculations.


Author(s):  
Hamidreza Kakhsaz ◽  
Abdolhamid Ansari

Underground storage of natural gas is an inevitable necessity because of increasing growth of household energy consumption, the high share of natural gas in the energy basket, high costs of development of production resources, and refining. Considering the growth of demand and variation of natural gas consumption as a massive and inexpensive energy carrier, also unbalanced supply and demand for natural gas in cold seasons, there is a need for natural gas storage for preventing lack of gas during peak gas consumption. In this way, extra gas is injected into the underground reservoir during storage in summer and taken from that reservoir in the cold seasons. The creation of underground reservoirs for storing natural gas is scheduled to be implemented by the gas storage company and the vulnerability of the transmission and distribution system will be prevented by storing surplus gas in summer for reprocing in winter.


2018 ◽  
Vol 67 ◽  
pp. 03009
Author(s):  
Abdul Wahid ◽  
Muhamad Taufiq Hidayat

Many problems often occur in producing natural gas from well. Due to the existence of water content in natural gas or water drive mechanism, liquid (especially water) is also produced from gas well, following natural gas production. When gas critical rate is higher than gas production rate due to reservoir pressure decline, it will cause liquid accumulation in the bottom of well, avoiding natural gas to be well lifted from well bottom to surface. It is liquid loading. Chemical injection of 0.4 liquid that consists of ethoxy sulphate, alkane sulphonate, and petroleum sulphonate is effective to overcome liquid loading in natural gas well thus causing an increase in natural gas production by 57%.


Sign in / Sign up

Export Citation Format

Share Document