The Necessity for Collaboration Between Data Scientists and Domain Experts

2021 ◽  
Author(s):  
Patrick Bangert

Abstract A practical data science, machine learning, or artificial intelligence project benefits from various organizational and managerial prerequisites. The effective collaboration between various data scientists and domain experts is perhaps the most important, which is discussed here. Based on practical experience, the principal theses put forward here are that (1) data science projects require domain expertise, (2) domain expertise and data science expertise generally cannot be provided by the same individual, (3) effective communication between the various experts is essential for which everyone requires some limited understanding of the others’ expertise and real-world experience, and (4) management must acknowledge these aspects by reserving sufficient project time and budget for communication and change management.

Author(s):  
Gary Smith ◽  
Jay Cordes

Scientific rigor and critical thinking skills are indispensable in this age of big data because machine learning and artificial intelligence are often led astray by meaningless patterns. The 9 Pitfalls of Data Science is loaded with entertaining real-world examples of both successful and misguided approaches to interpreting data, both grand successes and epic failures. Anyone can learn to distinguish between good data science and nonsense. We are confident that readers will learn how to avoid being duped by data, and make better, more informed decisions. Whether they want to be effective creators, interpreters, or users of data, they need to know the nine pitfalls of data science.


2021 ◽  
Vol 54 (6) ◽  
pp. 1-35
Author(s):  
Ninareh Mehrabi ◽  
Fred Morstatter ◽  
Nripsuta Saxena ◽  
Kristina Lerman ◽  
Aram Galstyan

With the widespread use of artificial intelligence (AI) systems and applications in our everyday lives, accounting for fairness has gained significant importance in designing and engineering of such systems. AI systems can be used in many sensitive environments to make important and life-changing decisions; thus, it is crucial to ensure that these decisions do not reflect discriminatory behavior toward certain groups or populations. More recently some work has been developed in traditional machine learning and deep learning that address such challenges in different subdomains. With the commercialization of these systems, researchers are becoming more aware of the biases that these applications can contain and are attempting to address them. In this survey, we investigated different real-world applications that have shown biases in various ways, and we listed different sources of biases that can affect AI applications. We then created a taxonomy for fairness definitions that machine learning researchers have defined to avoid the existing bias in AI systems. In addition to that, we examined different domains and subdomains in AI showing what researchers have observed with regard to unfair outcomes in the state-of-the-art methods and ways they have tried to address them. There are still many future directions and solutions that can be taken to mitigate the problem of bias in AI systems. We are hoping that this survey will motivate researchers to tackle these issues in the near future by observing existing work in their respective fields.


2021 ◽  
pp. 026638212110619
Author(s):  
Sharon Richardson

During the past two decades, there have been a number of breakthroughs in the fields of data science and artificial intelligence, made possible by advanced machine learning algorithms trained through access to massive volumes of data. However, their adoption and use in real-world applications remains a challenge. This paper posits that a key limitation in making AI applicable has been a failure to modernise the theoretical frameworks needed to evaluate and adopt outcomes. Such a need was anticipated with the arrival of the digital computer in the 1950s but has remained unrealised. This paper reviews how the field of data science emerged and led to rapid breakthroughs in algorithms underpinning research into artificial intelligence. It then discusses the contextual framework now needed to advance the use of AI in real-world decisions that impact human lives and livelihoods.


2018 ◽  
Vol 15 (3) ◽  
pp. 497-498 ◽  
Author(s):  
Ruth C. Carlos ◽  
Charles E. Kahn ◽  
Safwan Halabi

2021 ◽  
Author(s):  
Neeraj Mohan ◽  
Ruchi Singla ◽  
Priyanka Kaushal ◽  
Seifedine Kadry

2020 ◽  
pp. 87-94
Author(s):  
Pooja Sharma ◽  

Artificial intelligence and machine learning, the two iterations of automation are based on the data, small or large. The larger the data, the more effective an AI or machine learning tool will be. The opposite holds the opposite iteration. With a larger pool of data, the large businesses and multinational corporations have effectively been building, developing and adopting refined AI and machine learning based decision systems. The contention of this chapter is to explore if the small businesses with small data in hands are well-off to use and adopt AI and machine learning based tools for their day to day business operations.


2021 ◽  
pp. 164-184
Author(s):  
Saiph Savage ◽  
Carlos Toxtli ◽  
Eber Betanzos-Torres

The artificial intelligence (AI) industry has created new jobs that are essential to the real world deployment of intelligent systems. Part of the job focuses on labelling data for machine learning models or having workers complete tasks that AI alone cannot do. These workers are usually known as ‘crowd workers’—they are part of a large distributed crowd that is jointly (but separately) working on the tasks although they are often invisible to end-users, leading to workers often being paid below minimum wage and having limited career growth. In this chapter, we draw upon the field of human–computer interaction to provide research methods for studying and empowering crowd workers. We present our Computational Worker Leagues which enable workers to work towards their desired professional goals and also supply quantitative information about crowdsourcing markets. This chapter demonstrates the benefits of this approach and highlights important factors to consider when researching the experiences of crowd workers.


Information ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 193 ◽  
Author(s):  
Sebastian Raschka ◽  
Joshua Patterson ◽  
Corey Nolet

Smarter applications are making better use of the insights gleaned from data, having an impact on every industry and research discipline. At the core of this revolution lies the tools and the methods that are driving it, from processing the massive piles of data generated each day to learning from and taking useful action. Deep neural networks, along with advancements in classical machine learning and scalable general-purpose graphics processing unit (GPU) computing, have become critical components of artificial intelligence, enabling many of these astounding breakthroughs and lowering the barrier to adoption. Python continues to be the most preferred language for scientific computing, data science, and machine learning, boosting both performance and productivity by enabling the use of low-level libraries and clean high-level APIs. This survey offers insight into the field of machine learning with Python, taking a tour through important topics to identify some of the core hardware and software paradigms that have enabled it. We cover widely-used libraries and concepts, collected together for holistic comparison, with the goal of educating the reader and driving the field of Python machine learning forward.


Author(s):  
Marco Muselli

One of the most relevant problems in artificial intelligence is allowing a synthetic device to perform inductive reasoning, i.e. to infer a set of rules consistent with a collection of data pertaining to a given real world problem. A variety of approaches, arising in different research areas such as statistics, machine learning, neural networks, etc., have been proposed during the last 50 years to deal with the problem of realizing inductive reasoning.


Sign in / Sign up

Export Citation Format

Share Document