The Analysis of Drilling Barge Motions in a Random Sea

1972 ◽  
Vol 12 (06) ◽  
pp. 541-555
Author(s):  
Ben G. Burke

Burke, Ben G., Member AIME, Chevron Oil Field Research Co., La Habra, Calif. Abstract The theory of random processes has been shown to be an effective means of describing real ocean waves. This paper illustrates the application of the theory to the prediction of drilling barge motions due to waves. Measured data from a drilling barge in the open ocean are presented to verify the results. The theoretical model permits a means for computing the power spectra of drilling vessel motions from the directional power spectrum of the ocean waves and the wave response functions of the vessel. (The wave response functions are obtained by determining the motions of the vessel in simple, sinusoidal waves of all frequencies and directions.) Statistical properties of vessel motions, such as the rms motions, the "significant" amplitude, or the expected largest motion over the duration of a storm, may then be computed from the power spectra of the motions and a probability law. power spectra of the motions and a probability law. The theoretical model is adequate for many practical engineering problems and can be applied feasibly within the present state of the art. An example of results from the theoretical model is presented using a sample of data obtained from a drilling barge offshore Oregon during operations by Standard Oil Co. of California, in the summer of 1965. The data was analyzed by computing auto spectra and cross spectra from the measured time series of vessel motions and waves and by estimating the directional wave spectrum with a least-squares fit to the measured wave spectra. Power spectra of vessel motions were then computed from the random vibration model using the estimated directional wave spectrum and wave response functions; the results are compared with the vessel motion spectra obtained from the measured data. Average and extreme values from the measured data are compared with corresponding values predicted from the theoretical probability law. Results from the comparisons support the validity of the theoretical model as a practical engineering tool. Introduction Floating drilling vessels are presently in operation on continental margins throughout the world in the search for petroleum reserves. Experience has shown that drilling vessel motions caused by particular wave conditions can significantly impair or halt drilling operations and that the capability for operating in a particular wave environment varies considerably among available drilling vessels. In the past, information from various sources has served as a basis for selection of a drilling vessel and drilling equipment for an operation in a particular area; results from model test data, theoretical studies, and actual experience sometimes gained at considerable expense have all served as a basis for selection. Requirements continue to arise for conducting floating drilling operations in new areas, and in more severe wave and weather environments than have been experienced previously. As these requirements increase, the need for more accurate means to predict vessel motions in particular wave environments increases; and as more complete oceanographic data becomes available, the use of more complete theoretical models for calculating vessel motions becomes practical. This paper presents a theoretical model for predicting the motions of drilling vessels in waves predicting the motions of drilling vessels in waves that can serve as an engineering tool for the selection of drilling vessels and drilling equipment for operations in prospective wave environments. The paper is presented in two parts. The first part describes the theoretical model and discusses several considerations pertinent to an intelligent application of the model. The second part describes the analysis of measured data used to verify several aspects of the theoretical model and presents results from one data record to support the validity of the model. THEORETICAL MODEL The theoretical model for predicting the motions of a drilling vessel in waves is based on elements of small-amplitude rigid body mechanics, small-amplitude wave theory and the theory of random vibrations. The variables and relationships that constitute the theoretical model are described and several practical aspects of applying the model to engineering problems are discussed. SPEJ p. 541

Author(s):  
Céline Drouet ◽  
Nicolas Cellier ◽  
Jérémie Raymond ◽  
Denis Martigny

In-service monitoring can help to increase safety of ships especially regarding the fatigue assessment. For this purpose, it is compulsory to know the environmental conditions encountered: wind, but also the full directional wave spectrum. During the EU TULCS project, a full scale measurements campaign has been conducted onboard the CMA-CGM 13200 TEU container ship Rigoletto. She has been instrumented to measure deformation of the ship as well as the sea state encountered during its trip. This paper will focus on the sea state estimation. Three systems have been installed to estimate the sea state encountered by the Rigoletto: An X-band radar from Ocean Waves with WAMOS® system and two altimetric wave radars from RADAC®. Nevertheless, the measured significant wave height can be disturbed by several external elements like bow waves, sprays, sea surface ripples, etc… Furthermore, ship motions are also measured and can provide another estimation of the significant wave height using a specific algorithm developed by DCNS Research for the TULCS project. As all those estimations are inherently different, it is necessary to make a fusion of those data to provide a single estimation (“best estimate”) of the significant wave height. This paper will present the data fusion process developed for TULCS and show some first validation results.


2013 ◽  
Vol 361-363 ◽  
pp. 1659-1663
Author(s):  
Ji Xin Yang ◽  
Qian Rui Liu ◽  
Zhao Da Zeng

Combined with practical engineering, the second-class level measured data is got via stack preloading experiment on the soft and weak railway subgrade. By using the hyperbolic method and three points method to fit subsidence curve, the post-construction settlement S (t =∞) and the settlement at any time S(t) is evaluated, then a reasonable unloading time is inferred by the comparison between S (t =∞) and S(t=180). Studies have shown that hyperbolic method and three points method can predict the post-construction settlement accurately, the time unloading six months after the stack is completed is quite reasonable.


2017 ◽  
Vol 27 (9) ◽  
pp. 093912 ◽  
Author(s):  
Hans Dierckx ◽  
Henri Verschelde ◽  
Alexander V. Panfilov

2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Chenglong Yu ◽  
Shihong Yue ◽  
Jianpei Wang ◽  
Huaxiang Wang

As an advanced process detection technology, electrical impedance tomography (EIT) has widely been paid attention to and studied in the industrial fields. But the EIT techniques are greatly limited to the low spatial resolutions. This problem may result from the incorrect preprocessing of measuring data and lack of general criterion to evaluate different preprocessing processes. In this paper, an EIT data preprocessing method is proposed by all rooting measured data and evaluated by two constructed indexes based on all rooted EIT measured data. By finding the optimums of the two indexes, the proposed method can be applied to improve the EIT imaging spatial resolutions. In terms of a theoretical model, the optimal rooting times of the two indexes range in [0.23, 0.33] and in [0.22, 0.35], respectively. Moreover, these factors that affect the correctness of the proposed method are generally analyzed. The measuring data preprocessing is necessary and helpful for any imaging process. Thus, the proposed method can be generally and widely used in any imaging process. Experimental results validate the two proposed indexes.


2011 ◽  
Vol 68 (9) ◽  
pp. 2042-2060 ◽  
Author(s):  
David A. Ortland ◽  
M. Joan Alexander ◽  
Alison W. Grimsdell

Abstract Convective heating profiles are computed from one month of rainfall rate and cloud-top height measurements using global Tropical Rainfall Measuring Mission and infrared cloud-top products. Estimates of the tropical wave response to this heating and the mean flow forcing by the waves are calculated using linear and nonlinear models. With a spectral resolution up to zonal wavenumber 80 and frequency up to 4 cpd, the model produces 50%–70% of the zonal wind acceleration required to drive a quasi-biennial oscillation (QBO). The sensitivity of the wave spectrum to the assumed shape of the heating profile, to the mean wind and temperature structure of the tropical troposphere, and to the type of model used is also examined. The redness of the heating spectrum implies that the heating strongly projects onto Hough modes with small equivalent depth. Nonlinear models produce wave flux significantly smaller than linear models due to what appear to be dynamical processes that limit the wave amplitude. Both nonlinearity and mean winds in the lower stratosphere are effective in reducing the Rossby wave response to heating relative to the response in a linear model for a mean state at rest.


1988 ◽  
Vol 1 (21) ◽  
pp. 3
Author(s):  
Tetsunori Ohshimo ◽  
Kosuke Kondo ◽  
Tsunehiro Sekimoto

Field investigations were performed in order to show the effect of wave diffraction by breakwaters through directional wave spectra measurements in a harbor, and to estimate the reflection coefficient by resolving the incident and reflected wave energy in front of a composite type breakwater. Combinations of an ultrasonic wave gage (USW) and an electromagnetic current meter (EMC) were used to measure the synchronized data of the water surface elevation and two horizontal velocities. The EMLM (Extended Maximum Likelihood Method) was applied for the calculation of the directional wave spectrum, and the modified EMLM for an incident and reflection wave field was applied for the estimation of the reflection coefficient. Through the estimated directional wave spectra, the effect of wave diffraction by breakwaters were discussed and the reflection coefficient was estimated at about 0.9. As a result, the applicability of the field investigation method and the modified EMLM were verified.


1991 ◽  
Vol 113 (3) ◽  
pp. 219-227 ◽  
Author(s):  
A. Cornett ◽  
M. D. Miles

This paper describes the generation and verification of four realistic sea states in a multidirectional wave basin, each representing a different storm wave condition in the Gulf of Mexico. In all cases, the degree of wave spreading and the mean direction of wave propagation are strongly dependent on frequency. Two of these sea states represent generic design wave conditions typical of hurricanes and winter storms and are defined by JONSWAP wave spectra and parametric spreading functions. Two additional sea states, representing the specific wave activity during hurricanes Betsy and Carmen, are defined by tabulated hindcast estimates of the directional wave energy spectrum. The Maximum Entropy Method (MEM) of directional wave analysis paired with a single-wave probe/ bi-directional current meter sensor is found to be the most satisfactory method to measure multidirectional seas in a wave basin over a wide range of wave conditions. The accuracy of the wave generation and analysis process is verified using residual directional spectra and numerically synthesized signals to supplement those measured in the basin. Reasons for discrepancy between the measured and target directional wave spectra are explored. By attempting to reproduce such challenging sea states, much has been learned about the limitations of simulating real ocean waves in a multidirectional wave basin, and about techniques which can be used to minimize the associated distortions to the directional spectrum.


2014 ◽  
Vol 902 ◽  
pp. 344-350
Author(s):  
Xiang Jia Li ◽  
Ning Dai ◽  
Wen He Liao ◽  
Yu Chun Sun ◽  
Yong Bo Wang

Offsetting of measured data, as a basic geometric operation, has already been widely used in many areas, like reverse engineering, rapid prototyping and NC machining. However, measured data always carry typical defects like caves and singular points. A fault-tolerant offset method is proposed to create the high quality offset surface of measured data with such defects. Firstly, we generated an expansion sphere model of measured data with the radius equivalent to the offset length. Secondly, using the computational geometry application of convex hull, we acquire the data of outermost enveloping surface of this expansion sphere model. Finally, we use local MLS projection fitting method to wipe out existing defects, and generate the high-quality triangular mesh surface of the offset model. The offset surface generated by this method is suitable for practical engineering application due to its high efficiency and accuracy.


2017 ◽  
Vol 27 (13) ◽  
pp. 1750195 ◽  
Author(s):  
Dmitry P. Kovalev ◽  
Peter D. Kovalev

The phenomenon of synchronization (trapping) of coming waves by the resonant water area in a coastal zone of the sea found from the observed data is considered in the paper. Edge waves with the period of about 10.7 minutes are visually observed in sea level fluctuations near the village of Okhotskoye and the cape Ostri on the southeast coast of Sakhalin Island. These waves are synchronized with the resonance water area. It becomes apparent from the unlimited increase of a phase between the bottom stations installed at distance of about 7.5[Formula: see text]km. In relation to the phenomenon found, the problem of weak and periodic impact on regular self-oscillatory system — Van der Paul’s oscillator — is considered. Good compliance between theoretical model and data of experiments is obtained.


2021 ◽  
Author(s):  
Chien Ming Wang ◽  
Huu Phu Nguyen ◽  
Jeong Cheol Park ◽  
Mengmeng Han ◽  
Nagi abdussamie ◽  
...  

<p>Floating breakwaters have been used to protect shorelines, marinas, very large floating structures, dockyards, fish farms, harbours and ports from harsh wave environments. A floating breakwater outperforms its bottom-founded counterpart with respect to its environmental friendliness, cost-effectiveness in relatively deep waters or soft seabed conditions, flexibility for expansion and downsizing and its mobility to be towed away. The effectiveness of a floating breakwater design is assessed by its wave attenuation performance that is measured by the wave transmission coefficient (i.e., the ratio of the transmitted wave height to the incident wave height or the ratio of the transmitted wave energy to the incident wave energy). In some current design guidelines for floating breakwaters, the transmission coefficient is estimated based on the assumption that the realistic ocean waves may be represented by regular waves that are characterized by the significant wave period and wave height of the wave spectrum. There is no doubt that the use of regular waves is simple for practicing engineers designing floating breakwaters. However, the validity and accuracy of using regular waves in the evaluation of wave attenuation performance of floating breakwaters have not been thoroughly discussed in the open literature. This study examines the wave transmission coefficients of floating breakwaters by performing hydrodynamic analysis of some large floating breakwaters in ocean waves modelled as regular waves as well as irregular waves described by a wave spectrum such as the Bretschneider spectrum. The formulation of the governing fluid motion and boundary conditions are based on classical linear hydrodynamic theory. The floating breakwater is assumed to take the shape of a long rectangular box modelled by the Mindlin thick plate theory. The finite element – boundary element method was employed to solve the fluid-structure interaction problem. By considering heave-only floating box-type breakwaters of 200m and 500m in length, it is found that the transmission coefficients obtained by using the regular wave model may be smaller (or larger) than that obtained by using the irregular wave model by up to 55% (or 40%). These significant differences in the transmission coefficient estimated by using regular and irregular waves indicate that simplifying assumption of realistic ocean waves as regular waves leads to significant over/underprediction of wave attenuation performance of floating breakwaters. Thus, when designing floating breakwaters, the ocean waves have to be treated as irregular waves modelled by a wave spectrum that best describes the wave condition at the site. This conclusion is expected to motivate a revision of design guidelines for floating breakwaters for better prediction of wave attenuation performance. Also, it is expected to affect how one carries out experiments on floating breakwaters in a wave basin to measure the wave transmission coefficients.</p>


Sign in / Sign up

Export Citation Format

Share Document