Evaluating Pressure Integrity of Polymer Ring Seals for Threaded Connections in HP/HT Wells and Expandable Casing

SPE Journal ◽  
2008 ◽  
Vol 13 (01) ◽  
pp. 123-132 ◽  
Author(s):  
Lawrence B. Hilbert ◽  
Jorgen Bergstrom

Summary This paper presents new technology for evaluating high-pressure gas-seal integrity of polymer ring seals used as secondary or backup pressure seals in casing and tubing threaded connections. This new technology may also enable the further consideration of API connections with ring seals, as an alternative to premium connections, for appropriate applications. A nonlinear elasto-viscoplastic constitutive model for the behavior of polymers and elastomers has been developed and extended to the specific application of analysis of casing and tubing connections with fiberglass-filled polytetrafluoroethylene (PTFE) ring seals. Procedures for modeling makeup of a connection including a fiberglass-filled PTFE ring seal have been developed using a finite-element model (FEM) of 10¾-in. OD, 45.5 lb/ft, P-110 API buttress thread casing-seal ring groove (BTC-SRG). The results of finite-element analysis (FEA) of makeup, followed by the application of thermal, axial, and internal pressure loads are presented in this paper. In addition, based on the interest in the development of gas-tight threaded connections for expandable casing, the FEM was subjected to a radial expansion of a 20% increase in the outside diameter. In this paper, the theory of the constitutive model is summarized and calibration of the model with experimental test and published data are presented. The focus of the FEA results is on the contact pressures between the ring seal, coupling groove, and pin threads. Historical Perspective FEA of threaded connections has been used for overcoming challenging well-design problems for many years (Crose et al. 1976). FEA has become an important part of the validation and service evaluation process of API and proprietary casing and tubing threaded connection designs, along with the physical testing procedures documented in API RP 5C5 (1996) and ISO 13679: 2002 (2002). Major advances have been achieved in design of premium connections through analysis of metal-to-metal seal contact stresses computed from FEM (Hilbert and Kalil 1992). Analysis and verification of the performance of threaded connections that include polymeric or elastomeric ring seals has been limited to full-scale physical testing (Payne 1988). Until now, only costly full-scale gas pressure tests have been used to evaluate ring seal integrity. Ring-seal design has been a trial and error process, with new ring-seal or pin and coupling dimensions prescribed only after failure of the seal in a proof test. In some cases, ring design or the effects of ring dimensions have been based on analytical calculations, relying on the bulk modulus of the material. When more advanced design tools, such as FEA, have been used, the pressure generated by entrapment of the ring seal has been estimated and then these pressures have been applied to the groove and pin thread surfaces to simulate the effect of the actual ring seal. The developments in the paper were motivated by a need to reduce the cost of connection qualification by reducing the number of tests and to improve the process of ring-seal design. Properties of PTFE PTFE is a thermoplastic fluorocarbon derived from the monomer tetrafluoroethylene (TFE). PTFE is a semi-crystalline polymer composed of crystalline and amorphous regions. Its molecular structure, shown in Fig. 1, consists of long chains of carbon atoms symmetrically surrounded by fluorine atoms. This structure imbues PTFE with unique mechanical and chemical properties. The straight "backbone" of carbon atoms provides PTFE with a high degree of chemical inertness, stability, and one of the lowest coefficients of friction of any commonly used material. PTFE is more commonly known by the trade name Teflon. In a moment of pure serendipity, in 1938 Roy Plunckett of DuPont discovered TFE when he was conducting experiments to develop nonflammable, nontoxic, colorless, and odorless refrigerants (Ebnesajjad 2000).

Author(s):  
Fei Song ◽  
Ke Li

Abstract In this paper, a hybrid computational framework that combines the state-of-the art machine learning algorithm (i.e., deep neural network) and nonlinear finite element analysis for efficient and accurate fatigue life prediction of rotary shouldered threaded connections is presented. Specifically, a large set of simulation data from nonlinear FEA, along with a small set of experimental data from full-scale fatigue tests, constitutes the dataset required for training and testing of a fast-loop predictive model that could cover most commonly used rotary shouldered connections. Feature engineering was first performed to explore the compressed feature space to be used to represent the data. An ensemble deep learning algorithm was then developed to learn the underlying pattern, and hyperparameter tuning techniques were employed to select the learning model that provides the best mapping, between the features and the fatigue strength of the connections. The resulting fatigue life predictions were found to agree favorably well with the experimental results from full-scale bending fatigue tests and field operational data. This newly developed hybrid modeling framework paves a new way to realtime predicting the remaining useful life of rotary shouldered threaded connections for prognostic health management of the drilling equipment.


2020 ◽  
Vol 14 (3) ◽  
pp. 157-173
Author(s):  
B. N. Lucci ◽  
W. Q. Lamas ◽  
F. J. Grandinetti ◽  
G. E. O. Giacaglia

Author(s):  
Baojiu Lin ◽  
David W. Nicholson

This study concerns the development of a finite element model to support design improvements in elastomeric seals subject to high temperature and pressure, such as in aircraft engines. Existing finite element codes familiar to the authors do not couple thermal and mechanical fields, nor do they implement thermomechanical contact models suitable for highly deformable materials. Recently, the authors have introduced a thermohyperelastic constitutive model for near-incompressible elastomers. In two subsequent studies, using the constitutive model, a method has been introduced for finite element analysis of coupled thermomechanical response, including boundary contributions due to large deformation and variable contact. A new thermomechanical contact model has also been introduced to accommodate the softness of elastomers. The method has been implemented in a special purpose code which concerns a seal compressed into a well. Several computations are used to validate the code. Simulations of a seal in an idealized geometry indicate rapid pressure increase with increasing compression and temperature.


2012 ◽  
Vol 49 (3) ◽  
pp. 344-356 ◽  
Author(s):  
S. Panayides ◽  
M. Rouainia ◽  
D. Muir Wood

The advanced constitutive model KHSM for structured clays, which incorporates the effects of loss of structure within an elastoplastic framework, has been implemented in a finite element procedure and used to investigate the failure height and pore-water pressures of embankment A constructed at Saint Alban, Quebec. For the purpose of model comparison, simulations were also performed using the standard bubble model (KHM) without destructuration. The numerical predictions of pore-water pressures and settlements are also compared with field measurements. The results clearly demonstrate the importance of including the effects of loss of structure in the analysis.


Author(s):  
Remy Her ◽  
Jacques Renard ◽  
Vincent Gaffard ◽  
Yves Favry ◽  
Paul Wiet

Composite repair systems are used for many years to restore locally the pipe strength where it has been affected by damage such as wall thickness reduction due to corrosion, dent, lamination or cracks. Composite repair systems are commonly qualified, designed and installed according to ASME PCC2 code or ISO 24817 standard requirements. In both of these codes, the Maximum Allowable Working Pressure (MAWP) of the damaged section must be determined to design the composite repair. To do so, codes such as ASME B31G for example for corrosion, are used. The composite repair systems is designed to “bridge the gap” between the MAWP of the damaged pipe and the original design pressure. The main weakness of available approaches is their applicability to combined loading conditions and various types of defects. The objective of this work is to set-up a “universal” methodology to design the composite repair by finite element calculations with directly taking into consideration the loading conditions and the influence of the defect on pipe strength (whatever its geometry and type). First a program of mechanical tests is defined to allow determining all the composite properties necessary to run the finite elements calculations. It consists in compression and tensile tests in various directions to account for the composite anisotropy and of Arcan tests to determine steel to composite interface behaviors in tension and shear. In parallel, a full scale burst test is performed on a repaired pipe section where a local wall thinning is previously machined. For this test, the composite repair was designed according to ISO 24817. Then, a finite element model integrating damaged pipe and composite repair system is built. It allowed simulating the test, comparing the results with experiments and validating damage models implemented to capture the various possible types of failures. In addition, sensitivity analysis considering composite properties variations evidenced by experiments are run. The composite behavior considered in this study is not time dependent. No degradation of the composite material strength due to ageing is taking into account. The roadmap for the next steps of this work is to clearly identify the ageing mechanisms, to perform tests in relevant conditions and to introduce ageing effects in the design process (and in particular in the composite constitutive laws).


Author(s):  
Qiuyi Shen ◽  
Zhenghao Zhu ◽  
Yi Liu

A three-dimensional finite element model for scarf-repaired composite laminate was established on continuum damage model to predict the load capacity under tensile loading. The mixed-mode cohesive zone model was adopted to the debonding behavior analysis of adhesive. Damage condition and failure of laminates and adhesive were subsequently addressed. A three-dimensional bilinear constitutive model was developed for composite materials based on damage mechanics and applied to damage evolution and loading capacity analyses by quantifying damage level through damage state variables. The numerical analyses were implemented with ABAQUS finite element analysis by coding the constitutive model into material subroutine VUMAT. Good agreement between the numerical and experimental results shows the accuracy and adaptability of the model.


Sign in / Sign up

Export Citation Format

Share Document