A Hybrid Supervised Deep Learning and Nonlinear Finite Element Framework for Efficient Fatigue Life Predictions of Rotary Shouldered Threaded Connections

Author(s):  
Fei Song ◽  
Ke Li

Abstract In this paper, a hybrid computational framework that combines the state-of-the art machine learning algorithm (i.e., deep neural network) and nonlinear finite element analysis for efficient and accurate fatigue life prediction of rotary shouldered threaded connections is presented. Specifically, a large set of simulation data from nonlinear FEA, along with a small set of experimental data from full-scale fatigue tests, constitutes the dataset required for training and testing of a fast-loop predictive model that could cover most commonly used rotary shouldered connections. Feature engineering was first performed to explore the compressed feature space to be used to represent the data. An ensemble deep learning algorithm was then developed to learn the underlying pattern, and hyperparameter tuning techniques were employed to select the learning model that provides the best mapping, between the features and the fatigue strength of the connections. The resulting fatigue life predictions were found to agree favorably well with the experimental results from full-scale bending fatigue tests and field operational data. This newly developed hybrid modeling framework paves a new way to realtime predicting the remaining useful life of rotary shouldered threaded connections for prognostic health management of the drilling equipment.

SIMULATION ◽  
2002 ◽  
Vol 78 (10) ◽  
pp. 587-599 ◽  
Author(s):  
Ali O. Atahan

Computer simulation of vehicle collisions has improved significantly over the past decade. With advances in computer technology, nonlinear finite element codes, and material models, full-scale simulation of such complex dynamic interactions is becoming ever more possible. In this study, an explicit three-dimensional nonlinear finite element code, LS-DYNA, is used to demonstrate the capabilities of computer simulations to supplement full-scale crash testing. After a failed crash test on a strong-post guardrail system, LS-DYNA is used to simulate the system, determine the potential problems with the design, and develop an improved system that has the potential to satisfy current crash test requirements. After accurately simulating the response behavior of the full-scale crash test, a second simulation study is performed on the system with improved details. Simulation results indicate that the system performs much better compared to the original design.


Author(s):  
L M Masu ◽  
G Craggs

This paper reports on an investigation into the fatigue strength of thick-walled cylinders that contain a small transverse hole or cross bore in the cylinder wall having either a chamfer or a blending radius at its intersection with the main cylinder bore. Fatigue tests surprisingly show that plain cross-bore cylinders having thickness ratios K = 1.4 and 2.0 have a fatigue life that is marginally greater than comparable cylinders with blending features. A finite element investigation shows that local high stresses are produced on the surface of blending features and these stresses are considerably greater in magnitude than those found in plain cross-bore cylinders. These stress findings are used to explain the experimental fatigue life results obtained.


Author(s):  
Farzad Tasbihgoo ◽  
John P. Caffrey ◽  
Sami F. Masri

For the past several years, USC has been involved in a major research project to study the seismic mitigation measures of nonstructural components in hospitals funded by the Federal Emergency Management Agency (FEMA). It was determined that piping was the one of the most critical components affecting the functionality of a hospital following an earthquake. Consequently, a substantial effort was spent on quantifying the behavior of typical piping components. During the loading of the threaded joint, it was common to hear a loud popping sound, followed by a small water leak. It was assumed that the sound and leakage were due to the sliding of the mating pipe threads. To confirm this theory, and to provide a tool to help understand the failure mode(s) for a wide class of threaded fittings, a detailed nonlinear finite element model was constructed using MSC/NASTRAN, and correlated to the measured failures. In this paper, a simplified model is presented first to demonstrate the modeling procedure and to help understand the sliding phenomenon. Next, a symmetric half 3D model was generated for modeling the physical experiments. It is shown that the finite element analysis (FEA) of the threaded connections captures the dominant mechanism that was observed in the experimental tests.


SPE Journal ◽  
2008 ◽  
Vol 13 (01) ◽  
pp. 123-132 ◽  
Author(s):  
Lawrence B. Hilbert ◽  
Jorgen Bergstrom

Summary This paper presents new technology for evaluating high-pressure gas-seal integrity of polymer ring seals used as secondary or backup pressure seals in casing and tubing threaded connections. This new technology may also enable the further consideration of API connections with ring seals, as an alternative to premium connections, for appropriate applications. A nonlinear elasto-viscoplastic constitutive model for the behavior of polymers and elastomers has been developed and extended to the specific application of analysis of casing and tubing connections with fiberglass-filled polytetrafluoroethylene (PTFE) ring seals. Procedures for modeling makeup of a connection including a fiberglass-filled PTFE ring seal have been developed using a finite-element model (FEM) of 10¾-in. OD, 45.5 lb/ft, P-110 API buttress thread casing-seal ring groove (BTC-SRG). The results of finite-element analysis (FEA) of makeup, followed by the application of thermal, axial, and internal pressure loads are presented in this paper. In addition, based on the interest in the development of gas-tight threaded connections for expandable casing, the FEM was subjected to a radial expansion of a 20% increase in the outside diameter. In this paper, the theory of the constitutive model is summarized and calibration of the model with experimental test and published data are presented. The focus of the FEA results is on the contact pressures between the ring seal, coupling groove, and pin threads. Historical Perspective FEA of threaded connections has been used for overcoming challenging well-design problems for many years (Crose et al. 1976). FEA has become an important part of the validation and service evaluation process of API and proprietary casing and tubing threaded connection designs, along with the physical testing procedures documented in API RP 5C5 (1996) and ISO 13679: 2002 (2002). Major advances have been achieved in design of premium connections through analysis of metal-to-metal seal contact stresses computed from FEM (Hilbert and Kalil 1992). Analysis and verification of the performance of threaded connections that include polymeric or elastomeric ring seals has been limited to full-scale physical testing (Payne 1988). Until now, only costly full-scale gas pressure tests have been used to evaluate ring seal integrity. Ring-seal design has been a trial and error process, with new ring-seal or pin and coupling dimensions prescribed only after failure of the seal in a proof test. In some cases, ring design or the effects of ring dimensions have been based on analytical calculations, relying on the bulk modulus of the material. When more advanced design tools, such as FEA, have been used, the pressure generated by entrapment of the ring seal has been estimated and then these pressures have been applied to the groove and pin thread surfaces to simulate the effect of the actual ring seal. The developments in the paper were motivated by a need to reduce the cost of connection qualification by reducing the number of tests and to improve the process of ring-seal design. Properties of PTFE PTFE is a thermoplastic fluorocarbon derived from the monomer tetrafluoroethylene (TFE). PTFE is a semi-crystalline polymer composed of crystalline and amorphous regions. Its molecular structure, shown in Fig. 1, consists of long chains of carbon atoms symmetrically surrounded by fluorine atoms. This structure imbues PTFE with unique mechanical and chemical properties. The straight "backbone" of carbon atoms provides PTFE with a high degree of chemical inertness, stability, and one of the lowest coefficients of friction of any commonly used material. PTFE is more commonly known by the trade name Teflon. In a moment of pure serendipity, in 1938 Roy Plunckett of DuPont discovered TFE when he was conducting experiments to develop nonflammable, nontoxic, colorless, and odorless refrigerants (Ebnesajjad 2000).


2014 ◽  
Vol 670-671 ◽  
pp. 1087-1090
Author(s):  
Wei Ping Ouyang ◽  
Liang Sheng Chen ◽  
Xiu Dong Xu

The research of fatigue properties of the butt welded joint, though a large number of fatigue tests are need to be carried out, has significant influence to hoisting equipment’s design, development and using safety. This paper conducted a study on simulating the fatigue properties of widely used steel Q345 butt welded joint’s by finite element method based on the improved linear equivalent structural stress theory. The originally massive amount of fatigue tests and data processing could be saved. In order to ensure the accuracy of the fatigue modeling, a batch of Q345 butt welded joints were prepared for the fatigue tests which is used to contrast with the modeling result. The stress distribution under different load situation and the fatigue life of the joints, which have profound reference significance to hoisting machinery industry, can be acquired through modeling.


2014 ◽  
Vol 939 ◽  
pp. 39-46 ◽  
Author(s):  
Hong Qian Xue ◽  
Qian Tao ◽  
Emin Bayraktar

The aim of this study is to examine the effect of the clearance and interference-fit on the fatigue life of composite lap joints in double shear, 3D finite element simulations have been performed to obtain stress (or strain) distributions around the hole due to interference fit using FEM package, Non-linear contact analyses are performed to examine the effects of the clearance and interference for titanium and composite lap joint. Fatigue tests were conducted for the titanium and composite lap joints with clearance fit and interference fit with 0.5, 1, and 1.5% nominal interference fit levels at different cyclic loads. The results shows that interference fit increases fatigue life compared to clearance fit specimens, the titanium and composite lap joint with 1% interference fit level has the better fatigue life.


Author(s):  
Stefan Dietz ◽  
Helmuth Netter ◽  
Delf Sachau

Abstract The dynamic loads and accelerations acting on a railway bogie are predicted by multibody simulation. The bogie frame is considered as an elastic body of the MBS-model, in which elastic displacements are represented by eigen and staticmodes. Stresses are calculated for the most stressed locations of a bogie in the MBS-postprocessor. Based on these a fatigue life prediction is carried out.


Sign in / Sign up

Export Citation Format

Share Document