Hydraulic Fracturing of Polymer Injection Wells

Author(s):  
Yan Wang ◽  
Demin Wang ◽  
Zhi Sun ◽  
Changlan Shi ◽  
Gang Wang ◽  
...  
SPE Journal ◽  
2022 ◽  
pp. 1-18
Author(s):  
Marat Sagyndikov ◽  
Randall Seright ◽  
Sarkyt Kudaibergenov ◽  
Evgeni Ogay

Summary During a polymer flood, the field operator must be convinced that the large chemical investment is not compromised during polymer injection. Furthermore, injectivity associated with the viscous polymer solutions must not be reduced to where fluid throughput in the reservoir and oil production rates become uneconomic. Fractures with limited length and proper orientation have been theoretically argued to dramatically increase polymer injectivity and eliminate polymer mechanical degradation. This paper confirms these predictions through a combination of calculations, laboratory measurements, and field observations (including step-rate tests, pressure transient analysis, and analysis of fluid samples flowed back from injection wells and produced from offset production wells) associated with the Kalamkas oil field in Western Kazakhstan. A novel method was developed to collect samples of fluids that were back-produced from injection wells using the natural energy of a reservoir at the wellhead. This method included a special procedure and surface-equipment scheme to protect samples from oxidative degradation. Rheological measurements of back-produced polymer solutions revealed no polymer mechanical degradation for conditions at the Kalamkas oil field. An injection well pressure falloff test and a step-rate test confirmed that polymer injection occurred above the formation parting pressure. The open fracture area was high enough to ensure low flow velocity for the polymer solution (and consequently, the mechanical stability of the polymer). Compared to other laboratory and field procedures, this new method is quick, simple, cheap, and reliable. Tests also confirmed that contact with the formation rapidly depleted dissolved oxygen from the fluids—thereby promoting polymer chemical stability.


2021 ◽  
Author(s):  
Dennis Alexis ◽  
Gayani Pinnawala ◽  
Do Hoon Kim ◽  
Varadarajan Dwarakanath ◽  
Ruth Hahn ◽  
...  

Abstract The work described in this paper details the development of a single stimulation package that was successfully used for treating an offshore horizontal polymer injection well to improve near wellbore injectivity in the Captain field, offshore UK. The practice was to pump these concentrated surfactant streams using multiple pumps from a stimulation vessel which is diluted with the polymer injection stream in the platform to be injected downhole. The operational challenges were maintaining steady injection rates of the different liquid streams which was exacerbated by the viscous nature of the concentrated surfactants that would require pre-dilution using cosolvent or heating the concentrated solutions before pumping to make them flowable. We have developed a single, concentrated liquid blend of surfactant, polymer and cosolvent that was used in near-wellbore remediation. This approach significantly simplifies the chemical remediation process in the field while also ensuring consistent product quality and efficiency. The developed single package is multiphase, multicomponent in nature that can be readily pumped. This blend was formulated based on the previous stimulation experience where concentrated surfactant packages were confirmed to work. Commercial blending of the single package was carried out based on lab scale to yard scale blending and dilution studies. About 420 MT of the blend was manufactured, stored, and transported by rail, road and offshore stimulation vessel to the field location and successfully injected.


2005 ◽  
Author(s):  
Yan Wang ◽  
Demin Wang ◽  
Zhi Sun ◽  
Song Zhao ◽  
Gang Wang ◽  
...  

2014 ◽  
Vol 203 (1) ◽  
pp. 37-46 ◽  
Author(s):  
Xingbin Liu ◽  
Yanjun Wang ◽  
Ronghua Xie ◽  
Yuhui Zhang ◽  
Chunhui Huang ◽  
...  

Georesursy ◽  
2016 ◽  
Vol 18 (1) ◽  
pp. 46-50
Author(s):  
O.V. Salimov ◽  
◽  
I.I. Girfanov ◽  
A.V. Kochetkov ◽  
R.Z. Ziyatdinov ◽  
...  

2011 ◽  
Vol 361-363 ◽  
pp. 370-376
Author(s):  
Xiang Rong Nie ◽  
Shi Qing Cheng

Polymer solution is known as non-Newtonian Fluid. Hence, when a well is injected by polymer solution, the well test data analysis using Newtonian fluid flow model will be erroneous. However, the analysis results usually were inaccurate when generalized non-Newtonian fluid model which considering polymer solution as power law fluid and taking no account of physical and chemical behaviors. These results clearly suggest the need for a study to come up with a new model considering both physical and chemical behaviors when polymer solution flowing in the reservoirs. At first, this study modified two parameter models: viscosity model and permeability decreasing coefficient model, all of them considering diffusion, conduction and IPV (inaccessible pore volume). Then, those models were applied to set up the new well testing model of a well located in an infinite reservoir. The log-log plots of the pressure and pressure derivatives have been prepared through numerical solutions. A further study has been done about the characteristics of the new type curves considering different parameters.


2011 ◽  
Author(s):  
Yao Yao ◽  
Jerome Lewandowski ◽  
Timothy Kirk Ellison ◽  
Kevin Howard Searles

2021 ◽  
Author(s):  
Doszhan Yeleussinov ◽  
Arman Assangaliyev ◽  
Assel Ospanova ◽  
Vener Nagimov ◽  
Elena Kirpichikova ◽  
...  

Abstract Hydraulic fracturing has been demonstrated to be a cost-effective method of developing low-permeability heterogeneous clastic reservoirs with vertical wells. In the presence of a thin shale layer as a seal, monitoring effective fracture height becomes extremely important. The conventional approach of a single-regime production logging may be ineffective due to the complex geometry of fluid flow in the near-wellbore zone around the well. The paper describes the experience of the multi-rate through barrier diagnostics as a method of improving hydraulic fracturing evaluation. The standard way to diagnose the effectiveness of hydraulic fracturing is to log a survey under current operating conditions. In general, temperature and passive spectral acoustic measurements provide useful information on identifying the boundaries of fluid movement behind production casing; however, it is difficult to determine if flow occurs in the vertical hydraulic fracture or channeling through damaged cement in a single-regime survey. The multi-rate through-barrier diagnostics allow analyzing the flow dynamics of the wellbore-fracture-formation system under different flowing regimes, enabling a more accurate assessment of fluid movement in the near-wellbore environment within several meters. The paper includes the results of the multi-rate logging survey campaign in vertical water injection wells drilled in a low-permeability clastic reservoir. A proppant-based hydraulic fracturing of the target formation was carried out in the wells. The geological structure of the developed reservoir includes a thin shale layer (break) that separates the target oil-saturated interval from the overlying water bearing reservoir. In order for the operator to optimize future stimulation programs identification of effective hydraulic fracture height in reservoir regions with different shale thicknesses is crucial. The upper boundaries of the injected fluid movement behind the casing were determined based on the survey results. Analysis of the acoustic and temperature field dynamics helped more reliably evaluate the nature of the fluid movement behind the casing, whether flow happens in vertical fracture or cement channeling. This results in a more precise quantitative assessment of the injection profile in the targeted and untargeted reservoir units.


Sign in / Sign up

Export Citation Format

Share Document