Water Injection In Viscous Oil Through Horizontal Well

2005 ◽  
Author(s):  
Rogerio Favinha Martini ◽  
Euclides Jose Bonet ◽  
Denis Jose Schiozer
2003 ◽  
Vol 2003 (1) ◽  
pp. 447-452
Author(s):  
Commander Michael Drieu ◽  
Ron MacKay ◽  
Flemming Hvidbak ◽  
Lieutenant Commander Peter Nourse ◽  
David Cooper

ABSTRACT Over the past nine years, the U.S. Coast Guard has incorporated the Prevention Through People (PTP) philosophy as a “human factors” approach to learn how maritime operations can be regulated safer and be more efficient by evaluating training, management policies, operational procedures, and establishing partnerships with the maritime industry. One of the key elements of applying a PTP approach is identifying and incorporating lessons learned from major marine casualties and pollution incidents. Since 1997, the U.S. Coast Guard National Strike Force (NSF) has responded to three major oil spills involving foreign freight vessels grounding, which included the removal of highly viscous oil using various lightering equipment and systems. An informal workgroup consisting of the U.S. Coast Guard, U.S. Navy Supervisor of Salvage (NAVSUPSALV), and various representatives from oil pollution clean-up companies met at the following facilities: the Chevron Asphalt Facility in Edmonds, WA (September 1999), the Oil and Hazardous Materials Simulated Environmental Test Tank (OHMSETT) testing facility in Leonardo, New Jersey (November 1999 and March 2000), the Alaska Clean Seas (ACS) warehouse annex in Prudhoe Bay, AK (October 2000), and Cenac Towing Company facility in Houma, LA (May 2002). The group shared ideas and techniques, and tested different pumps and hose lengths with viscous oil. It was during the early tests that the first quantitative results showed just how efficient lubricated transport of heavy oil product could be, and broadened the knowledge of such methods to the entire industry. Although this technology had existed for many years in the oil production and handling industry, its use had never been investigated in a laboratory setting with regard to salvage response lightering systems. The lubrication of heavy oil product was first applied in the tests in the form of Annular Water Injection (AWI) by means of an, Annular Water Injection Flange (AWIF). This idea had been developed many years ago by the oil industry to improve oil output production, but was first applied to salvage response using the flange concept by the Frank Mohn Company of Norway. In concept, the flange applies water to the viscous product discharge of a pump by means of its unique geometry. The initial tests resulted in developing the use of AWI on the discharge side of the pump. This technique was further refined and applied to existing U.S. Coast Guard lightering systems in the form of the Viscous Oil Pumping System (VOPS) package, which has been issued to each of the three USCG Strike Teams of the National Strike Force (NSF). Latest improvements include using AWI on the suction side of the pump with hot water or steam. For this suction application, a different device used to deliver water lubrication was also tested concurrently with the discharge AWIF. Other significant improvements, which achieved one of the goals set in 2000, was to seek global partnership with other companies or agencies from other countries. In 2002, the Canadian Coast Guard formally joined the U.S. VOPS workgroup to form the Joint Viscous Oil Pumping System (JVOPS) Workgroup.


2015 ◽  
Author(s):  
Torsten Clemens ◽  
Thomas Finkbeiner ◽  
Maria-Magdalena Chiotoroiu ◽  
Katherine Pettengell ◽  
Samuel Hercus ◽  
...  

2021 ◽  
Author(s):  
Jongsoo Hwang ◽  
Mukul Sharma ◽  
Maria-Magdalena Chiotoroiu ◽  
Torsten Clemens

Abstract Horizontal water injection wells have the capacity to inject larger volumes of water and have a smaller surface footprint than vertical wells. We present a new quantitative analysis on horizontal well injectivity, injection scheme (matrix vs. fracturing), and fracture containment. To precisely predict injector performance and delineate safe operating conditions, we simulate particle plugging, thermo-poro-elastic stress changes, thermal convection and conduction and fracture growth/containment in reservoirs with multiple layers. Simulation results show that matrix injection in horizontal wells continues over a longer time than vertical injectors as the particle deposition occurs slowly on the larger surface area of horizontal wellbores. At the same time, heat loss occurs uniformly over a longer wellbore length to cause less thermal stress reduction and delay fracture initiation. As a result, the horizontal well length and the injection rates are critical factors that control fracture initiation and long-term injectivity of horizontal injectors. To predict fracture containment accurately, thermal conduction in the caprock and associated thermal stresses are found to be critical factors. We show that ignoring these factors underestimates fracture height growth. Based on our simulation analysis, we suggest strategies to maintain high injectivity and delay fracture initiation by controlling the injection rate, temperature, and water quality. We also provide several methods to design horizontal water injectors to improve fracture containment considering wellbore orientation relative to the local stress orientations. Well placement in the local maximum horizontal stress direction induces longitudinal fractures with better containment and less fracture turning than transverse fractures. When the well is drilled perpendicular to the maximum horizontal stress direction, the initiation of transverse fractures is delayed compared with the longitudinal case. Flow control devices are recommended to segment the flow rate and the wellbore. This helps to ensure uniform water placement and helps to keep the fractures contained.


1995 ◽  
Author(s):  
Guanghul Zhou ◽  
Rul Zhang ◽  
Dehuang Shen ◽  
Haiyang Pu

1989 ◽  
Vol 1989 (1) ◽  
pp. 175-180
Author(s):  
Georges Peigne ◽  
Maurice Cessou

ABSTRACT Pumping viscous oil, whether when lightening a disabled vessel or recovering spilled oil, has always been an obstacle to efficient operations aiming to avoid or limit the impact of an oil spill. French authorities have had to deal with this during many oil spills: for example, the Amoco Cadiz, Tanio, or, more recently, the Amazzone incident. For many years, CEDRE and Institut Français du Pétrole (IFP) have been developing and testing various methods of improving the handling of naturally viscous products like heavy fuels or products that have become viscous by the formation of a water-in-oil emulsion. The technique of injecting a ring of water at the periphery of the hoses was studied. After some preliminary tests done by IFP on a laboratory scale, full-scale experiments were conducted by CEDRE using a specially designed injector. This device enabled a large reduction of the pressure drop in the back flow of a volumetric pump moving heavy fuels. The influence of different parameters also was evaluated. Concerning a break-up of “chocolate mousse” emulsions, it was necessary to verify the effectiveness of demulsifiers when applying them in the presence of free water, such as found when actually recovering oil spilled at sea. The influence of different parameters was first studied with a laboratory physical model and then confirmed during full-scale tests.


2008 ◽  
Author(s):  
Anderson Da Silva Amaral ◽  
Jody R. Augustine ◽  
Knut Herman Henriksen ◽  
Valdo Ferreira Rodrigues ◽  
Daniel Escobar Steagall ◽  
...  

2021 ◽  
Author(s):  
Shijun Huang ◽  
Yuanrui Zhu ◽  
Shichao Chai ◽  
Guanyang Ding ◽  
Yicheng Xin ◽  
...  

Abstract A major concern with water injection in offshore oil reservoir is the water breakthrough. The formation heterogeneity is the main reason for it. In order to evaluate the water injection efficiency, a visualized 2-D experiment was carried out to obtain the distribution law of injected water and the variation of injection parameters in homogeneous and heterogeneous formation. In addition, a coupled wellbore/reservoir model was established by applying microelement method, superposition principle and imaging. This model considers the formation heterogeneity and pressure drop caused by wellbore friction. The visualized 2-D sand filling displacement experiment indicates that the injection rate at the horizontal well heel is greater than that at the toe and the injection front is more irregular in heterogeneous formation. The injection rate and injection pressure distribution along the horizontal well are obtained analytically based on the proposed model, the results show that the injection rate at the two sides of the wellbore is much higher than that in the middle when the formation is homogeneous and the wellbore is infinite-conductive. In this case, the injection rate curve along horizontal well shows a "U" shaped distribution. When a finite-conductive horizontal wellbore is considered, the injection rate at the heel of the wellbore is higher than that of the toe, although the injection rate curve along horizontal well also exhibits a deformed "U" shape distribution. For the formation heterogeneities along the horizontal wellbore, the injection rate distribution curve is not continuous anymore, but a deformed "U" shape is also observed for each wellbore segment. At last, the established model was applied to an ultra-heterogeneous offshore reservoir. It is concluded that the profile control effect of typical well is obvious. The results of this study are of great significance for the calculation of the injection rate profile and improving the water injection efficiency.


2003 ◽  
Vol 20 (1) ◽  
pp. 395-413 ◽  
Author(s):  
M. Gambaro ◽  
M. Currie

AbstractThe Balmoral Oilfield is a mature asset in its final phase of production. Associated with the Balmoral development have been the less significant Glamis and Stirling Fields. Each field is different from the perspective of geology and many other issues. Balmoral is a typical Paleocene oilfield with good water drive from a large regional aquifer. Interestingly this was not recognized at the start of the development when water injection facilities were commissioned. Glamis is a smaller field of Late Jurassic age containing somewhat lighter oil than Balmoral. Water injection has been necessary to maximize recovery in this field. Stirling is one of the few fields in the North Sea to produce commercially from the naturally fractured Devonian Sandstone. This field is developed by a single horizontal well.Balmoral oil recovery has significantly exceeded original expectations, whilst Glamis and Stirling have produced as much as expected.


Sign in / Sign up

Export Citation Format

Share Document