CO2 Mobility Control

1984 ◽  
Vol 24 (02) ◽  
pp. 191-196 ◽  
Author(s):  
Stan E. Dellinger ◽  
John T. Patton ◽  
Stan T. Holbrook

Abstract As early as 1955, surfactants were recognized for their effectiveness in lowering gas mobility in reservoir cores by in-situ foam generation. For commercial field application a specific surfactant must have several important characteristics. it must behighly effective with low cost,chemically stable, soluble. and surface active in oil field brines, andunaffected by contact with crude oil or reservoir minerals. A static foam generator, an adaptation of a conventional blender, was used to screen more than 150 candidate surfactants. Promising additives were then ranked in a unique dynamic test, developed at New Mexico State U., that involves sequential liquid/gas flow in a vertical tube packed with glass beads. Conventional flow tests in tight, unconsolidated sandpacks show good correlation with the dynamic and static screening tests, especially those data obtained in the dynamic experiment. Some synergism exists between additives with amine oxides and amides having the most beneficial effect on foam stability and gas mobility control. The utility of cosurfactant stabilization was demonstrated in linear, two-phase flow tests through tight. unconsolidated sandpacks involving brine and gas. A solution containing 0.45% Alipal CD-128 (TM) and 0.05% Monamid 150-AD (TM) can decrease gas mobility over 100-fold. The effect appears to be time-independent, indicative of good foam stability. Alipal CD-128 alone reduces gas mobility even more, usually by a factor of two. The moderating influence of a cosurfactant could be beneficial in avoiding "overcontrol" of mobility, especially in low-permeability reservoirs. Introduction For more than 30 years recovery experts have known that CO2 possesses a unique ability to displace crude oil from reservoir rock. Although many gases have been tested for their crude-displacing efficacy, only CO2 has the ability to reduce residual oil saturations to near zero and produce significant quantities of tertiary oil in models that have been previously waterflooded to the economic limit. Early studies provided the fundamental understanding required to explain the high efficiency of CO2, but until recently the depressed price of crude has made most, if not all, CO2 field applications unprofitable. A common failing among-as-driven oil recovery processes is the severe gas channeling that occurs in the reservoir because of excessively high gas mobility. Optimistic oil recoveries obtained in laboratory flow tests with small-diameter, linear models have never been achieved in the field. Both miscible and immiscible drive processes suffer because gas channeling causes most of the oil reservoir to be bypassed and the oil left behind. The earliest work relative to the problem of lowering the mobility of CO2 does not involve CO2 at all. Because of the high potential for miscible drives that use enriched gas mixtures, considerable study was undertaken in the late 1950's on techniques to mitigate gas channeling. A few visionary investigators considered the use of foams as a possible solution to the problem. The earliest reported work was conducted by Bond and Holbrook, whose 1958 patent describes the use of foams in gas-drive processes. Because of the high cost of CO2 relative to crude oil during this period, CO2 processes were ignored. The use of foams in conjunction with CO2, was not contemplated until much later when rising crude prices revived interest in the CO2 displacement technique. CO2 exists as a dense gas or supercritical phase under reservoir conditions: therefore, experiments on controlling gas mobility are usually applicable to CO2 even though they may have been conducted with other gases such as nitrogen, methane, or even air. Concurrent with Bond and Holbrook's work, Fried, working at the USBM laboratory in San Francisco, demonstrated the potential of foam to lower the mobility of an injected gas phase. Fried's work was followed by some excellent work reporting an experimental technique involving in-situ foam generation promoted by injecting alternate slugs of surfactant solution and gas. Their patent related to the use of foam for mobility control in CO2 injection processes is especially pertinent. Laboratory work was encouraging enough that Union Oil Co. conducted a field test in the Siggins field, IL. Foam generation by alternate-slug injection and simultaneous gas-solution injection was tested. This test indicated that at concentrations below 1% the foaming agent, a modified ammonium lauryl sulfate, did not produce an effective foam. Above 1%, reduced gas mobility was obtained; however, at least 0.06 PV of surfactant solution had to be injected to achieve lasting mobility control. Since the tests were conducted sequentially, with the higher concentrations injected last, it is possible that the required amount of surfactant may be understated. A 0.1-PV bank might be more realistic for lasting mobility control. Their results also indicated that adsorption may reduce the effectiveness of a surfactant. It was suggested that future tests might benefit by selection of agents that are less strongly absorbed than ammonium lauryl sulfate. SPEJ P. 191^

SPE Journal ◽  
2016 ◽  
Vol 21 (04) ◽  
pp. 1140-1150 ◽  
Author(s):  
M. A. Fernø ◽  
J.. Gauteplass ◽  
M.. Pancharoen ◽  
A.. Haugen ◽  
A.. Graue ◽  
...  

Summary Foam generation for gas mobility reduction in porous media is a well-known method and frequently used in field applications. Application of foam in fractured reservoirs has hitherto not been widely implemented, mainly because foam generation and transport in fractured systems are not clearly understood. In this laboratory work, we experimentally evaluate foam generation in a network of fractures within fractured carbonate slabs. Foam is consistently generated by snap-off in the rough-walled, calcite fracture network during surfactant-alternating-gas (SAG) injection and coinjection of gas and surfactant solution over a range of gas fractional flows. Boundary conditions are systematically changed including gas fractional flow, total flow rate, and liquid rates. Local sweep efficiency is evaluated through visualization of the propagation front and compared for pure gas injection, SAG injection, and coinjection. Foam as a mobility-control agent resulted in significantly improved areal sweep and delayed gas breakthrough. Gas-mobility reduction factors varied from approximately 200 to more than 1,000, consistent with observations of improved areal sweep. A shear-thinning foam flow behavior was observed in the fracture networks over a range of gas fractional flows.


2020 ◽  
Vol 10 (8) ◽  
pp. 3961-3969
Author(s):  
Muhammad Khan Memon ◽  
Khaled Abdalla Elraies ◽  
Mohammed Idrees Ali Al-Mossawy

Abstract The use of surfactant is one of the possible solutions to minimize the mobility of gases and improve the sweep efficiency, but the main problem with this process is its stability in the presence of injection water and crude oil under reservoir conditions. In this study, the three types of surfactant anionic, nonionic and amphoteric are examined in the presence of brine salinity at 96 °C and 1400 psia. To access the potential blended surfactant solutions as gas mobility control, laboratory test including aqueous stability, interfacial tension (IFT) and mobility reduction factor (MRF) were performed. The purpose of MRF is to evaluate the blocking effect of selected optimum surfactant solutions. Based on experimental results, no precipitation was observed by testing the surfactant solutions at reservoir temperature of 96 °C. The tested surfactant solutions reduced the IFT between crude oil and brine. The effectiveness and strength of surfactant solutions without crude oil under reservoir conditions were evaluated. A high value of differential pressure demonstrates that the strong foam was generated inside a core that resulted in delay in breakthrough time and reduction in the gas mobility. High mobility reduction factor result was measured by the solution of blended surfactant 0.6%AOS + 0.6%CA406H. Mobility reduction factor of other tested surfactant solutions was found low due to less generated foam by using CO2 under reservoir conditions. The result of these tested surfactant solutions can provide the better understanding of the mechanisms behind generated foam stability and guideline for their implementation as gas mobility control during the process of surfactant alternating gas injection.


SPE Journal ◽  
2011 ◽  
Vol 16 (04) ◽  
pp. 889-907 ◽  
Author(s):  
George J. Hirasaki ◽  
Clarence A. Miller ◽  
Maura Puerto

Summary In this paper, recent advances in surfactant enhanced oil recovery (EOR) are reviewed. The addition of alkali to surfactant flooding in the 1980s reduced the amount of surfactant required, and the process became known as alkaline/surfactant/polymer flooding (ASP). It was recently found that the adsorption of anionic surfactants on calcite and dolomite can also be significantly reduced with sodium carbonate as the alkali, thus making the process applicable for carbonate formations. The same chemicals are also capable of altering the wettability of carbonate formations from strongly oil-wet to preferentially water-wet. This wettability alteration in combination with ultralow interfacial tension (IFT) makes it possible to displace oil from preferentially oil-wet carbonate matrix to fractures by oil/water gravity drainage. The alkaline/surfactant process consists of injecting alkali and synthetic surfactant. The alkali generates soap in situ by reaction between the alkali and naphthenic acids in the crude oil. It was recently recognized that the local ratio of soap/surfactant determines the local optimal salinity for minimum IFT. Recognition of this dependence makes it possible to design a strategy to maximize oil recovery with the least amount of surfactant and to inject polymer with the surfactant without phase separation. An additional benefit of the presence of the soap component is that it generates an oil-rich colloidal dispersion that produces ultralow IFT over a much wider range of salinity than in its absence. It was once thought that a cosolvent such as alcohol was necessary to make a microemulsion without gel-like phases or a polymer-rich phase separating from the surfactant solution. An example of an alternative to the use of alcohol is to blend two dissimilar surfactants: a branched alkoxylated sulfate and a double-tailed, internal olefin sulfonate. The single-phase region with NaCl or CaCl2 is greater for the blend than for either surfactant alone. It is also possible to incorporate polymer into such aqueous surfactant solutions without phase separation under some conditions. The injected surfactant solution has underoptimum phase behavior with the crude oil. It becomes optimum only as it mixes with the in-situ-generated soap, which is generally more hydrophobic than the injected surfactant. However, some crude oils do not have a sufficiently high acid number for this approach to work. Foam can be used for mobility control by alternating slugs of gas with slugs of surfactant solution. Besides effective oil displacement in a homogeneous sandpack, it demonstrated greatly improved sweep in a layered sandpack.


SPE Journal ◽  
2018 ◽  
Vol 24 (01) ◽  
pp. 116-128 ◽  
Author(s):  
Swej Y. Shah ◽  
Karl-Heinz Wolf ◽  
Rashidah M. Pilus ◽  
William R. Rossen

Summary Foam reduces gas mobility and can improve sweep efficiency in an enhanced-oil-recovery (EOR) process. Previous studies show that foam can be generated in porous media by exceeding a critical velocity or pressure gradient. This requirement is typically met only near the wellbore, and it is uncertain whether foam can propagate several tens of meters away from wells as the local pressure gradient and superficial velocity decreases. Theoretical studies show that foam can be generated, independent of pressure gradient, during flow across an abrupt increase in permeability. In this study, we validate theoretical predictions through a variety of experimental evidence. Coreflood experiments involving simultaneous injection of gas and surfactant solution at field-like velocities are presented. We use model consolidated porous media made out of sintered glass, with a well-characterized permeability transition in each core. The change in permeability in these artificial cores is analogous to sharp, small-scale heterogeneities, such as laminations and cross laminations. Pressure gradient is measured across several sections of the core to identify foam-generation events and the subsequent propagation of foam. X-ray computed tomography (CT) provides dynamic images of the coreflood with an indication of foam presence through phase saturations. We investigate the effects of the magnitude of permeability contrast on foam generation and mobilization. Experiments demonstrate foam generation during simultaneous flow of gas and surfactant solution across a sharp increase in permeability, at field-like velocities. The experimental observations also validate theoretical predictions of the permeability contrast required for foam generation by “snap-off” to occur at a certain gas fractional flow. Pressure-gradient measurements across different sections of the core indicate the presence or absence of foam and the onset of foam generation at the permeability change. There is no foam present in the system before generation at the boundary. CT measurements help visualize foam generation and propagation in terms of a region of high gas saturation developing at the permeability transition and moving downstream. If coarse foam is formed upstream, then it is transformed into stronger foam at the transition. Significant fluctuations are observed in the pressure gradient across the permeability transition, suggesting intermittent plugging and mobilization of flow there. This is the first CT-assisted experimental study of foam generation by snap-off only, at a sharp permeability increase in a consolidated medium. The results of experiments reported in this paper have important consequences for a foam application in highly heterogeneous or layered formations. Not including the effect of heterogeneities on gas mobility reduction in the presence of surfactant could underestimate the efficiency of the displacement process.


2016 ◽  
Vol 7 (1) ◽  
pp. 77-85 ◽  
Author(s):  
Muhammad Khan Memon ◽  
Muhannad Talib Shuker ◽  
Khaled Abdalla Elraies

2021 ◽  
Author(s):  
Sivabalan Sakthivel ◽  
Mazen Kanj

Abstract Foams are the divergent fluids that are employed in the upstream oil and gas industry to reduce fluid channeling and fingering in the high permeability region. Foams are usually generated in the high permeability reservoirs (e.g. glass beads) by the alternative injection of surfactant and gas. Conventional foaming systems exhibit stability issues at the high temperature and high salinity reservoir conditions. In this investigation, we study the stability and efficiency (in terms of both enhanced inflow performance and added oil recovery) of foams formed using surfactant solution with and without carbon Nanodots (CND). The study involved using different brine salinities, CND concentrations, temperature and pressure conditions, and types of surfactants. A multifaceted interrelationship of the various influencing mechanisms is demonstrated. Foams are examined using foam analyzer, HP/HT coreflood and microfluidic setup. In trace amounts (5-10 ppm), CND contributed to 60-70% improvement in foam stability in high salinity brine. The improvement is attributed by the reduction of the drainage rate of the lamellae and a delay of the bubble rupturing point. Both microfluidic and core-flood experiments showed noticeable improvement in mobility control with the addition of the CND. This is contributed to an improved foamability, morphology, strength, and stability of the foam.


1982 ◽  
Vol 22 (02) ◽  
pp. 245-258 ◽  
Author(s):  
E.F. deZabala ◽  
J.M. Vislocky ◽  
E. Rubin ◽  
C.J. Radke

Abstract A simple equilibrium chemical model is presented for continuous, linear, alkaline waterflooding of acid oils. The unique feature of the theory is that the chemistry of the acid hydrolysis to produce surfactants is included, but only for a single acid species. The in-situ produced surfactant is presumed to alter the oil/water fractional flow curves depending on its local concentration. Alkali adsorption lag is accounted for by base ion exchange with the reservoir rock. The effect of varying acid number, mobility ratio, and injected pH is investigated for secondary and tertiary alkaline flooding. Since the surface-active agent is produced in-situ, a continuous alkaline flood behaves similar to a displacement with a surfactant pulse. This surfactant-pulse behavior strands otherwise mobile oil. It also leads to delayed and reduced enhanced oil recovery for adverse mobility ratios, especially in the tertiary mode. Caustic ion exchange significantly delays enhanced oil production at low injected pH. New, experimental tertiary caustic displacements are presented for Ranger-zone oil in Wilmington sands. Tertiary oil recovery is observed once mobility control is established. Qualitative agreement is found between the chemical displacement model and the experimental displacement results. Introduction Use of alkaline agents to enhance oil recovery has considerable economic impetus. Hence, significant effort has been directed toward understanding and applying the process. To date, however, little progress has been made toward quantifying the alkaline flooding technique with a chemical displacement model. Part of the reason why simulation models have not been forthcoming for alkali recovery schemes is the wide divergence of opinion on the governing principles. Currently, there are at least eight postulated recovery mechanisms. As classified by Johnson and Radke and Somerton, these include emulsification with entrainment, emulsification with entrapment, emulsification (i.e., spontaneous or shear induced) with coalescence, wettability reversal (i.e., oil-wet to water-wet or water-wet to oil-wet), wettability gradients, oil-phase swelling (i.e., from water-in-oil emulsions), disruption of rigid films, and low interfacial tensions. The contradictions among these mechanisms apparently reside in the chemical sensitivity of the crude oil and the reservoir rock to reaction with hydroxide. Different crude oils in different reservoir rock can lead to widely disparate behavior upon contact with alkali under varying environments such as temperature, salinity, hardness concentration, and pH. The alkaline process remains one of the most complicated and least understood. It is not surprising that there is no consensus on how to design a high-pH flood for successful oil recovery. One theme, however, does unify all present understanding. The crude oil must contain acidic components, so that a finite acid number (i.e., the milligrams of potassium hydroxide required to neutralize 1 gram of oil) is necessary. Acid species in the oil react with hydroxide to produce salts, which must be surface active. It is not alkali per se that enhances oil recovery, but rather the hydrolyzed surfactant products. Therefore, a high acid number is not a sufficient recovery criterion, because not all the hydrolyzed acid species will be interfacially active. That acid crude oils can produce surfactants upon contact with alkali is well documented. The alkali technique must be distinguished from all others by the fundamental basis that the chemicals promoting oil recovery are generated in situ by saponification. SPEJ P. 245^


Author(s):  
Muhammad Khan Memon ◽  
Khaled Abdalla Elraies ◽  
Mohammed Idrees Ali Al-Mossawy

AbstractMost of the available commercial surfactants precipitate due to the hardness of formation water. The study of surfactant generated foam and its stability is very complex due to its multifaceted pattern and common physicochemical properties. This research involved the study of foam generation by using the blended surfactants and their evaluation in terms of enhanced oil recovery (EOR). The objective of this study is to systematic screening of surfactants based on their capability to produce stable foam in the presence of two different categories of crude oil. Surfactant types such as non-ionic, anionic and amphoteric were selected for the experimental study. The foam was generated with crude oil, and the synthetic brine water of 34,107 ppm used as formation water. Surfactant concentration with the both types of crude oil, foam decay, liquid drainage and foam longevity was investigated by measuring the generated foam volume above the liquid level. The surfactant with concentration of 0.6wt%AOSC14-16, 1.2wt%AOSC14-16, 0.6wt%AOSC14-16 + 0.6wt%TX100 and 0.6wt%AOSC14-16 + 0.6wt%LMDO resulted in the maximum foam longevity with formation water and two categories of crude oil. The 50% liquid drainage and foam decay of surfactant solutions with concentration of 0.6wt%AOSC14-16 + 0.6wt%LMDO and 0.6wt%AOSC14-16 + 0.6wt%TX100 were noted with the maximum time. The findings of this research demonstrated that the generated foam and its longevity is dependent on the type of surfactant either individual or blended with their concentration. The blend of surfactant solution combines excellent foam properties.


Sign in / Sign up

Export Citation Format

Share Document