Field Evaluation of Improved Oil Recovery Methods in a Libyan Oilfield

2016 ◽  
Author(s):  
Augustine O. Ifelebuegu ◽  
Zydan H. Zydan

ABSTRACT Intisar A oil field is a Libyan field located in Concession 103 and has been in production since 1968. In this paper, we report the field evaluation results of the various productions enhancement techniques and initiatives applied for incremental oil production. The impact of improved recovery by various waterflood optimisation processes including infill well drilling, installations of ESPs, current well re-completion, and conversion wells were evaluated taking into consideration surface facility constraints. An incremental total daily production of 9872 STB/D was achieved in the overall optimisation projects with infill horizontal well drilling producing the highest incremental recovery. The internal rate of return for the overall project was 72% and a payback period of 3.4 years. The lessons learned, and recommendations for future development of the field were established.

2015 ◽  
Vol 137 (6) ◽  
Author(s):  
Wenting Yue ◽  
John Yilin Wang

The carbonate oil field studied is a currently producing field in U.S., which is named “PSU” field to remain anonymity. Discovered in 1994 with wells on natural flow or through artificial lift, this field had produced 17.8 × 106 bbl of oil to date. It was noticed that gas oil ratio had increased in certain parts and oil production declined with time. This study was undertaken to better understand and optimize management and operation of this field. In this brief, we first reviewed the geology, petrophysical properties, and field production history of PSU field. We then evaluated current production histories with decline curve analysis, developed a numerical reservoir model through matching production and pressure data, then carried out parametric studies to investigate the impact of injection rate, injection locations, and timing of injection, and finally developed optimized improved oil recovery (OIR) methods based on ultimate oil recovery and economics. This brief provides an addition to the list of carbonate fields available in the petroleum literature and also improved understandings of Smackover formation and similar analogous fields. By documenting key features of carbonated oil field performances, we help petroleum engineers, researchers, and students understand carbonate reservoir performances.


2021 ◽  
Author(s):  
Stephanie E. Perry ◽  
◽  
J. Alex Zumberge ◽  
Kai Cheng ◽  
◽  
...  

Subsurface characterization of fluid volumes is typically constrained and validated by core analytical fluid saturation measurement techniques (example Dean-Stark or Open Retort methodology). As production in resource plays has progressed over time, it has been noted that many of these methods have a large error when compared to production data. A large source of the error seems to be that water saturations in tight rocks have been consistently underestimated in the traditional laboratory measurement techniques. Operators need improved fluid saturation measurements to better constrain their log-based oil-in-place estimates and forward-looking production trends. The overall goal of this study is to test a new laboratory workflow for fluid saturation quantification. Recent advancements have led to an innovative methodology where a closed retort laboratory technique is applied to samples from lithological rock types in the Williston, Uinta and Denever-Julesburg (DJ) basins. This new technique is specifically designed to better quantify and validate water measurements throughout the tight rock analysis process, as well as improved oil recovery and built-in prediction. A comparison of standard crushed rock analysis employing Dean-Stark saturation methods is compared to the closed retort results and observations discussed. Results will also be compared against additional laboratory methods that validate the results such as geochemistry and nuclear magnetic resonance. Finally, open-hole wireline logs will be utilized to quantify the impact on total water saturation and the oil-in place estimates based on the improved accuracy of the closed retort technique.


2012 ◽  
Vol 550-553 ◽  
pp. 834-837
Author(s):  
Ji Gang Wang ◽  
Quan Qing Du ◽  
Peng Wu ◽  
Shao Li Hu ◽  
Pan Niu

Keywords: Visco-elastic property; polymer flooding; oil recovery Abstract. Polymer flooding and ASP flooding has improved oil recovery a lot in Daqing oil field. In ASP flooding, the existence of alkali decreases the visco-elastic characteristic of polymer, which decreases the oil recovery of polymer flooding. The aim of this paper was to study the visco-elastic characteristic, shear resistance in high concentration and high molecular weight polymer flooding, and analyzed the suitable parameter of it .They can provide the theory of polymer flooding development and application research.


2020 ◽  
Vol 10 (8) ◽  
pp. 3767-3777
Author(s):  
Asaad Faraj Hamzah ◽  
Mohammed Idrees Al-Mossawy ◽  
Wijdan Hussein Al-Tamimi ◽  
Fahad M. Al-Najm ◽  
Zainab Mohsen Hameed

Abstract Among 64 bacterial strains isolated in this study, the best two of biosurfactant-producing bacteria were selected and identified based on the phenotypic properties and molecular approach based on 16S rRNA having 100% similarity to the gram-negative Enterobacter aerogenes B19 strain bacteria and rode gram-positive strain Bacillus cereus ISU-02 in the Nucleotide database of the National Center for Biotechnology Information. The study showed that two selected isolates gave the highest positive results that were used to investigate the biosurfactant production including: interfacial reduction, foaming activity, hemolytic activity, CTAB agar plate, drop collapse assay, oil displacement test and emulsification index E24%. Both Bacillus cereus ISU-02 strain and Enterobacter aerogenes B19 strain have reduced the interfacial tension to 27.61 and 28.93, respectively. Biosurfactants produced from both isolates were tested for oil recovery using spontaneous imbibition process. Bacillus cereus ISU-02 strain gave the highest oil recovery of 66.9% for rock permeability of 843 mD, followed by Enterobacter aerogenes B19 strain with oil recovery of 34% for rock permeability 197 mD, while the lowest rate of oil recovery was 12.1% for FW with permeability of 770 mD. An additional oil rate reached to 7.9% has been recovered from the residual oil when the core plug that was treated with formation water alone was retreated with the cell free biosurfactant supernatant. Use of the new biosurfactants has improved oil recovery better than use of formation water alone or formation water with the commercial surfactant SDS.


2021 ◽  
Author(s):  
Chukwunonso Uche ◽  
Samuel Esieboma ◽  
Jennifer Uche ◽  
Ibrahim Bukar

Abstract An evaluation of potential EOR processes applicable in the marginal oil field operation of the Niger Delta region is presented. Technical feasibility, process availability, oil recovery potential, and other uncertainties and risks associated with exploitation of enhanced oil recovery technique in a marginal oil field environment are being assessed. Few Enhanced oil recovery processes, namely polymer flooding, chemical flooding and microbial EOR (MEOR), are considered for possible application in this marginal oil field. The objective of the screening study is to evaluate and rank the EOR options and also select the most attractive method that will have to be further chased to a pilot test stage. Emphasis is strictly on a technical assessment of the incremental oil potential of each of the EOR methods and also identification of critical operational and logistical components of the entire process for their implementation in the offshore operating environment. Recoverable volumes associated with EOR may be significant, but key project development and implementation challenges and extra cost elements must be considered in any EOR forecast for an effective EOR process ranking. Some of these concerns (e.g. Polymer/chemical supply, facilities requirements, and the impact of EOR on reservoir performance and wellbore integrity) may be significant enough to eliminate a method from being considered further and at that point the best EOR option that requires minimal cost exposure for achieving the best recoverable shall be considered. Moreso, there is consideration of the quantity and quality of laboratory data that should support the viability of each EOR process being considered. This paper narrates the state of technical readiness for field implementation of each EOR method and identifies remaining work required to progress EOR process in this marginal oil field.


2008 ◽  
Vol 2008 (1) ◽  
pp. 275-278 ◽  
Author(s):  
Chris Pfeifer ◽  
Erik Brzozowski ◽  
Ralph Markarian ◽  
Ramsey Redman

ABSTRACT In November 2005, approximately 1.9 million gallons of Group V slurry oil was released in the western Gulf of Mexico following the allision of the double-hulled tank barge DBL 152 with the submerged remains of a pipeline service platform that collapsed during Hurricane Rita. The released oil was denser than seawater and sank to the bottom. After approximately six weeks of intermittent cleanup using diver-direct pumping, submerged oil recovery operations were suspended by the Unified Command based on the high percentage (50%) of weather-related downtime, as well as indications that recoverable accumulations of oil were dispersing naturally, which further reduced the feasibility of cleanup. However, the responsible party was required to develop and implement a long-term monitoring program (LTMP) to track the fate and transport of the sunken oil and determine the potential need for resuming oil recovery operations once more favorable weather patterns returned in the spring. This paper will present an overview of the approach, methods and results of the long-term monitoring efforts performed over a 14-month period following the incident. Major objectives of the LTMP included tracking the movement and fate of non-recovered submerged oil to assess its extent and continued dispersion; providing advance warning of potential impacts to Gulf Coast shorelines and other sensitive areas; and documenting changes in the oil'S chemical composition and physical properties through time due to weathering processes. Major findings of the LTMP include the dissipation of the main submerged oil field over the course of several months and the discovery, differential behavior and eventual dissipation of a discrete high-concentration oil patch found several miles from the incident location. The importance of long-term monitoring data in the decision-making process to determine both the need for and feasibility of resuming submerged oil recovery operations will be emphasized. Information on the fate and transport characteristics of submerged oil and the adaptation of monitoring techniques to address evolving needs will also be addressed. Both the incident-specific information and the practical lessons-learned are intended to benefit those who may be faced with monitoring submerged oil spills in the future.


Sign in / Sign up

Export Citation Format

Share Document