scholarly journals Performance of provitamin A- quality protein maize inbred lines and derived hybrids in contrasting environments

2019 ◽  
Author(s):  
Ebenezer Obeng-Bio ◽  
Baffour Badu-Apraku ◽  
Beatrice Elohor Ifie ◽  
Agyemang Danquah ◽  
Essie Blay ◽  
...  

Abstract Background Early maturing provitamin A (PVA) quality protein maize (QPM) inbred lines with tolerance to drought and low-N are needed to develop superior hybrids in West and Central Africa (WCA). This study aimed to (i) identify inbred lines that combined drought and low-N tolerance with increased levels of PVA and tryptophan and (ii) assess the relationship among PVA carotenoids, tryptophan and grain yield. Sixty-four inbred lines plus six inbred checks were evaluated under induced drought, low-N and optimal conditions in 2016 and 2017 in Nigeria. The inbred lines were assayed for PVA and tryptophan contents. Results Thirty-three of the lines were found to be tolerant to drought and low-N. Ninety percent of the inbred lines had tryptophan contents > 0.075 % per sample in whole grain substantiating the presence of the QPM trait in the inbred lines. Inbred lines TZEIORQ 55 and TZEIORQ 29 combined high PVA contents (15.38 and 12.10μg g-1, respectively) with low-N tolerance while nine inbred lines combined moderate PVA levels (5.06 – 8.34μg g-1) with drought and low-N tolerance. Conclusions These maize inbred lines could be utilized to develop superior drought and low-N tolerant hybrids and synthetics with elevated levels of PVA and tryptophan for WCA. The correlations observed among grain yield, PVA and tryptophan of the lines were not significant suggesting that these traits could be improved independently.

Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1324
Author(s):  
Alimatu Sadia Osuman ◽  
Baffour Badu-Apraku ◽  
Beatrice E. Ifie ◽  
Pangirayi Tongoona ◽  
Ebenezer Obeng-Bio ◽  
...  

Adequate knowledge and understanding of the genetic diversity and inter-trait relationships among elite maize inbred lines are crucial for determining breeding strategies and predicting hybrid performance. The objectives of this study were to investigate the genetic diversity of 162 early maturing white and yellow tropical maize inbred lines, and to determine the population structure, heterotic groups and inter-trait relationships among the lines. Using 9684 DArT single nucleotide polymorphism (SNP) markers, a gene diversity (GD) of 0.30 was recorded for the inbred lines with polymorphic information content (PIC) ranging from 0.08 to 0.38. The genetic relatedness among the inbred lines evaluated revealed six different groups based on the history of selection, colour of endosperm and pedigree. The genotype-by-trait (GT) biplot analysis identified inbred 1 (TZEI 935) as outstanding in terms of combined heat and drought (HD) tolerance with the base index analysis identifying 15 superior inbreds in the HD environment. A wide range of genetic variability was observed among the inbred lines, indicating that they are an invaluable resource for breeding for HD tolerance in maize breeding programmes, especially in West and Central Africa.


2019 ◽  
Vol 157 (5) ◽  
pp. 413-433 ◽  
Author(s):  
E. Obeng-Bio ◽  
B. Badu-Apraku ◽  
B. E. Ifie ◽  
A. Danquah ◽  
E. T. Blay ◽  
...  

AbstractEarly-maturing provitamin A (PVA) quality protein maize (QPM) hybrids with combined drought and low soil nitrogen (low-N) tolerance are needed to address malnutrition and food security problems in sub-Saharan Africa (SSA). The current study's objectives were to (i) examine combining ability of selected early maturing PVA-QPM inbreds for grain yield and other agronomic traits under drought, low-N, optimal environments and across environments, (ii) determine gene action conditioning PVA accumulation under optimal environments, (iii) classify inbreds into heterotic groups and identify testers and (iv) assess yield and stability of hybrids across environments. Ninety-six hybrids generated from 24 inbred lines using the North Carolina Design II together with four commercial hybrid controls were evaluated under drought, low-N and optimal environments in Nigeria in 2016 and 2017. Fifty-four selected hybrids were assayed for PVA carotenoid and tryptophan content. Additive genetic effects were greater than non-additive effects for grain yield and most agronomic traits under each and across environments. The gene action conditioning accumulation of PVA carotenoids under optimal growing conditions followed a pattern similar to that of grain yield and other yield-related traits. The inbred lines were categorized into four heterotic groups consistent with the pedigree records and with TZEIORQ 29 identified as the best male and female tester for heterotic group IV. No tester was found for the other groups. Hybrid TZEIORQ 24 × TZEIORQ 41 was the highest yielding and most stable across environments and should be further tested for consistent performance for commercialization in SSA.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Benjamin Annor ◽  
Baffour Badu-Apraku ◽  
Daniel Nyadanu ◽  
Richard Akromah ◽  
Morakinyo A. B. Fakorede

Abstract Availability of multiple-stress tolerant maize is critical for improvement in maize production in West and Central Africa (WCA). A study was carried out to (i) assess a set of inbred lines for combining ability under stressed and optimal conditions, (ii) determine the performance of the testcrosses under different conditions, and (iii) identify outstanding hybrids across the conditions. Two hundred and five testcrosses were planted with five hybrid checks under Striga-infested, low soil nitrogen, drought and optimal conditions between 2015 and 2016 in Nigeria. The grain yield inheritance under optimal condition was largely regulated by additive gene effect whereas non-additive gene effects largely regulated grain yield under the three stresses. Four of the inbreds had significant positive general combining ability effects each under low N and drought, and three under Striga infestation for grain yield. The inbreds could be vital sources of beneficial alleles for development and improvement of tropical yellow maize hybrids and populations. Hybrids TZEI 443 x ENT 13 and TZEI 462 x TZEI 10 were high yielding and stable; they out-performed the three early maturing released hybrids in WCA. The new hybrids should be extensively assessed and released in the sub-region to improve food security.


2021 ◽  
Vol 4 (3) ◽  
pp. 286-304
Author(s):  
Lemi Mideksa Yadesa ◽  
Sentayehu Alamerew ◽  
Berhanu Tadesse

In spite of the importance of quality protein maize to alleviate protein deficiency, almost all maize varieties cultivated in Ethiopia are normal maize varieties, which are devoid of lysine and tryptophan. Perusing the combining ability of QPM inbred for grain yield and its components is vital to design appropriate breeding strategies for the development of nutritionally enhanced maize cultivars. A line x tester analysis involving 36 crosses generated by crossing 9  elite maize inbred lines with 4 testers were evaluated for different desirable agronomic traits during the 2019 main season at BNMRC and JARC. The experiment was conducted using alpha lattice design with 3 replications. The objectives were to determine the combining ability of quality protein maize inbred lines, adapted to mid altitude agroecology of Ethiopia for agronomic traits. The crosses were evaluated in alpha lattice design replicated 3 times. Analyses of variances showed significant mean squares due to crosses for almost all the traits studied. GCA mean squares due to lines and testers were significant (P<0.05 or P<0.01) for most studied traits. SCA mean squares were also significant for most attributes across locations. The comparative importance of GCA and SCA variances observed in the current study for most studied traits indicated the preponderance of additive genetic variance in governing these attributes. Only L3 was the best general combiner for grain yield. Inbred line L3, for days to anthesis and L5 for days to silking had negative and significant GCA effects. L5 and L6 displayed negative and significant GCA effects for plant and ear height. Crosses, L2xT4, L3xT4, L4xT4, L5xT2, L6xT3, L7xT2, L9xT1 and L9xT4 were good specific combiners for grain yield. In general, these genotypes help as a source of promising alleles that could be used for forthcoming breeding work in the development of quality protein maize cultivars with desirable traits.


2015 ◽  
Vol 154 (4) ◽  
pp. 647-661 ◽  
Author(s):  
B. BADU-APRAKU ◽  
M. A. B. FAKOREDE ◽  
M. OYEKUNLE ◽  
R. O. AKINWALE

SUMMARYBreeding for resistance to Striga hermonthica Del. (Benth) and tolerance to drought has been a major strategy to improve maize (Zea mays L.) production and productivity in West and Central Africa during the last three decades. The three decades consisted of three breeding periods or eras based on the germplasm and methodologies used; that is, 1988–2000, 2001–06 and 2007–11. A total of 50 early maturing cultivars, combining Striga resistance with drought tolerance were developed, including 15, 16 and 19 cultivars for the three periods, respectively. Although the cultivars were not selected intentionally for low-nitrogen (N) tolerance, it was hypothesized that tolerance to low-N had been significantly improved while selecting for drought tolerance and Striga resistance. This hypothesis was tested by evaluating the 50 cultivars in 2010 and 2011 in Nigeria at Mokwa and Ile-Ife under both low-N (30 kg N/ha) and high-N (90 kg N/ha) levels. Under low-N conditions, grain yield improved from 2280 kg/ha during the first period to 2610 kg/ha during the third period, an increase of 165 kg/ha per period with r2 of 0·99. Under high-N, yield increased from 3200 to 3650 kg/ha, an increase of 225 kg/ha and r2 of 0·93. Relative gain per period was 30 kg/ha for the two N rates with r2 values of 0·99 and 0·94 respectively. Grain yield performance of the 50 cultivars under low-N conditions adequately predicted their performance under high-N. Selection for Striga resistance and drought tolerance in early maturing maize populations enhanced low-N tolerance in the maize cultivars derived from the populations. The improvement was higher in later than earlier breeding periods.


2014 ◽  
Vol 59 (2) ◽  
pp. 101-116
Author(s):  
Omolaran Bello ◽  
Odunayo Olawuyi ◽  
Sunday Ige ◽  
Jimoh Mahamood ◽  
Micheal Afolabi ◽  
...  

Quality protein maize (QPM) combining the enhanced levels of lysine and tryptophan with high grain yield and desirable agronomic traits could reduce food insecurity and malnutrition in West and Central Africa. Twenty-two varieties of QPM and two local checks were evaluated for agronomic characteristics and nutritional qualities in the southern Guinea savanna of Nigeria for two years (2009 and 2010). Though crude protein levels are good indicators of quality, amino acid composition analyses, especially lysine and tryptophan that would provide a final proof are in progress. The genotypes comprised five open pollinated varieties (OPVs), nine inbred lines, eight hybrids and two local varieties. Differences among the varieties were significant (P<0.01) for grain yield, days to tasselling as well as plant and ear heights, while year x variety interaction was only significant (P<0.05) for days to tasselling. Most of the QPM inbred lines (CML 437, CML 490 CML 178) and hybrids (Dada-ba, ART98-SW5-OB, ART98-SW4- OB and TZPB-OB) have superior performance for grain yield, other yield attributes and nutritional qualities compared with the OPVs and local checks. These inbreds could be potential sources of favorable alleles useful for future maize breeding, while the hybrids could be evaluated in different environments of Nigeria for comparative advantages in different environments and quality of the grains to be released to farmers.


2010 ◽  
Vol 119 (2-3) ◽  
pp. 231-237 ◽  
Author(s):  
Ruth N. Musila ◽  
Alpha O. Diallo ◽  
Dan Makumbi ◽  
Kiarie Njoroge

Sign in / Sign up

Export Citation Format

Share Document