scholarly journals CircSEC24A promotes colorectal cancer progression by regulating miR-488-3p/TMEM106B axis

2020 ◽  
Author(s):  
Gaowu Hu ◽  
Wei Peng ◽  
Yongqing Cao

Abstract Background: Currently, more and more circular RNAs (circRNAs) have been identified to exert their functions in tumor progression, including colorectal cancer (CRC). However, the role of circSEC24A (circ_0003528) in CRC remains unknown.Methods: Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to determine the levels of circSEC24A, SEC24A and microRNA-488-3p (miR-488-3p). The characterization of circSEC24A was investigated by Actinomycin D and RNase R digestion assays. 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay was used to assess cell proliferation. Flow cytometry analysis was adopted for cell apoptosis and cell cycle process. Transwell assay was employed to evaluate cell migration and invasion. Western blot assay was performed to determine protein levels. Dual-luciferase reporter assay was utilized to explore the relationship between miR-488-3p and circSEC24A or transmembrane protein 106B (TMEM106B). Murine xenograft model was constructed to explore the effect of circSEC24A in vivo .Results: CircSEC24A level was increased in CRC tissues and cells. CircSEC24A deficiency impeded cell proliferation, cell cycle process, migration and invasion and induced apoptosis in CRC cells in vitro and blocked tumorigenesis in vivo . MiR-488-3p was a target of circSEC24A and miR-488-3p was downregulated in CRC tissues and cells. The inhibitory effect of circSEC24A silencing on CRC cell progression was restored by miR-488-3p inhibition. Moreover, TMEM106B could be negatively regulated by miR-488-3p via acting as a downstream gene of miR-488-3p. MiR-488-3p overexpression decelerated CRC cell progression by targeting TMEM106B.Conclusion: CircSEC24A facilitated CRC progression by regulating miR-488-3p/TMEM106B axis, which might provide a promising treatment approach for CRC.

Author(s):  
Zhipeng Jiang ◽  
Qinwen Tai ◽  
Xiaojun Xie ◽  
Zehui Hou ◽  
Wei Liu ◽  
...  

Abstract Background Colorectal cancer (CRC) is a common malignant tumor. Circular RNAs (circRNAs) have been reported to take part in the progression of CRC. However, the functions of circ_0084615 in CRC development are still undefined. In this study, we aimed to explore the functions and underlying mechanisms of circ_0084615 in CRC. Methods qRT-PCR, western blot assay and IHC assay were utilized for the levels of circ_0084615, miR-599, ONECUT2 or EIF4A3. 5-ethynyl-2’-deoxyuridine (EdU) assay and colony formation assay were conducted for cell proliferation ability. Wound-healing assay and transwell assay were applied to evaluate cell migration and invasion. Tube formation assay was used to analyze angiogenesis ability. RNA immunoprecipitation (RIP) assay, RNA pull down assay and dual-luciferase reporter assay were used to analyze the relationships of circ_0084615, miR-599, ONECUT2 and EIF4A3. Murine xenograft model assay was employed for the role of circ_0084615 in vivo. Results Circ_0084615 was elevated in CRC tissues and was linked to TNM stages, lymph node metastasis, differentiation and overall survival rate. Circ_0084615 knockdown inhibited CRC cell proliferation, migration, invasion and angiogenesis in vitro and hampered tumorigenesis in vivo. Circ_0084615 sponged miR-599 and miR-599 inhibition reversed circ_0084615 knockdown-mediated effects on CRC cell growth, motility and angiogenesis. ONECUT2 was identified as the target gene of miR-599. ONECUT2 overexpression recovered the effects of miR-599 on CRC malignant behaviors. Additionally, EIF4A3 induced circ_0084615 expression. Conclusions EIF4A3-induced circ_0084615 played an oncogenic role in CRC development via miR-599/ONECUT2 axis.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Ruijie Liu ◽  
Ping Deng ◽  
Yonglian Zhang ◽  
Yonglan Wang ◽  
Cuiping Peng

Abstract Background Circular RNAs (circRNAs) are a class of endogenous single-strand RNA transcripts with crucial regulation in human cancers. The objective of this study is to investigate the role of circ_0082182 in CRC and its specific functional mechanism. Methods The quantitative real-time polymerase chain reaction (qRT-PCR) was performed to measure the levels of circ_0082182, microRNA-411 (miR-411) and microRNA-1205 (miR-1205). Cell proliferation was detected by Cell counting Kit-8 (CCK-8) and colony formation assays. Flow cytometry was used for determining cell cycle and cell apoptosis. Cell apoptosis was also assessed by caspase3 and caspase9 activities. Cell migration and invasion were examined using scratch assay and transwell assay. The interaction between circ_0082182 and miRNA was validated by the dual-luciferase reporter and biotinylated RNA pull-down assays. Wnt/β-catenin pathway and epithelial-mesenchymal transition (EMT)-associated proteins were quantified by Western blot. Xenograft model was established for the research of circ_0082182 in vivo. Results Circ_0082182 was upregulated in CRC and could predict the poor prognosis of CRC patients. Functionally, circ_0082182 promoted CRC cell proliferation, cell cycle progression, and metastasis while inhibited apoptosis. Subsequently, circ_0082182 was shown to act as the sponges of miR-411 and miR-1205. MiR-411 and miR-1205 were identified as tumor inhibitors in CRC. Furthermore, circ_0082182 promoted the CRC progression via sponging miR-411 and miR-1205. Moreover, circ_0082182 facilitated the Wnt/β-catenin pathway and EMT process by targeting miR-411 and miR-1205. In vivo, circ_0082182 accelerated the CRC tumorigenesis and EMT process by activating the Wnt/β-catenin pathway by downregulating the expression of miR-411 or miR-1205. Conclusion This study showed that circ_0082182 functioned as an oncogene in the developing process of CRC by sponging miR-411 or miR-1205 to activate the Wnt/β-catenin pathway. Circ_0082182 might be a molecular target in the diagnosis and treatment of CRC.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Jingpeng Wang ◽  
Shuyuan Li ◽  
Gaofeng Zhang ◽  
Huihua Han

Abstract Background Sevoflurane (Sev), a commonly used volatile anesthetic, has been reported to inhibit the process of colorectal cancer (CRC). Circular RNAs (circRNAs) are revealed to participate in the pathogenesis of CRC. This study aims to reveal the mechanism of hsa_circ_0000231 in Sev-mediated CRC progression. Methods The expression of hsa_circ_0000231 and microRNA-622 (miR-622) was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Protein level was determined by western blot analysis. Cell proliferation was investigated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), cell colony formation and DNA content quantitation assays. Cell apoptosis was detected by Annexin V-fluorescein isothiocyanate and propidium iodide double staining and caspase 3 activity assays. Cell migration and invasion were investigated by wound-healing and transwell invasion assays, respectively. The putative relationship between hsa_circ_0000231 and miR-622 was predicted by circular RNA Interactome online database, and identified by dual-luciferase reporter and RNA immunoprecipitation assays. The impacts of hsa_circ_0000231 on Sev-mediated tumor formation in vivo were presented by in vivo assay. Results Hsa_circ_0000231 expression was upregulated, while miR-622 was downregulated in CRC tissues and cells compared with control groups. Sev treatment decreased hsa_circ_0000231 expression, but increased miR-622 expression in CRC cells. Sev treatment suppressed cell proliferation, migration and invasion, and induced cell apoptosis. Hsa_circ_0000231 overexpression restored Sev-mediated CRC progression in vitro. Additionally, hsa_circ_0000231 acted as a sponge of miR-622, and miR-622 inhibitors reversed the impacts of hsa_circ_0000231 silencing on CRC process. Furthermore, Sev treatment inhibited tumor growth by regulating hsa_circ_0000231 in vivo. Conclusion Hsa_circ_0000231 attenuated Sev-aroused repression impacts on CRC development by sponging miR-622. This findings may provide an appropriate anesthetic protocol for CRC sufferers undergoing surgery.


2020 ◽  
Vol 29 (4) ◽  
pp. 531-542
Author(s):  
Xiaowen He ◽  
Jun Ma ◽  
Mingming Zhang ◽  
Jianhua Cui ◽  
Hao Yang

Colorectal cancer (CRC) remains one of the most commonly diagnosed malignancies worldwide. Circular RNAs (circRNAs) are being found to play crucial roles in human cancer, including CRC. The purpose of this study was to explore the function and mechanism of circ_0007031 on CRC progression and 5-fluorouracil (5-FU) resistance. The levels of circ_0007031, ATP-binding cassette subfamily C member 5 (ABCC5) and miR-133b were assessed by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. Cell survival and proliferation were detected by the 3-(4,5-dimethylthiazol-2yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay. Cell colony formation was evaluated using a standard colony formation assay. Transwell assays were performed to determine cell migration and invasion. Targeted correlations among circ_0007031, miR-133b and ABCC5 were verified by dual-luciferase reporter, RNA immunoprecipitation (RIP) and RNA pulldown assays. Animal experiments were performed to observe the role of circ_0007031 in vivo. Our data indicated that circ_0007031 up-regulation was associated with CRC resistance to 5-FU. Circ_0007031 knockdown repressed CRC cell proliferation, migration and invasion and enhanced 5-FU sensitivity. Circ_0007031 directly interacted with miR-133b. Moreover, circ_0007031 knockdown regulated CRC cell progression and 5-FU sensitivity by miR-133b. ABCC5 was a direct target of miR-133b, and circ_0007031 mediated ABCC5 expression via acting as a miR-133b sponge. Furthermore, miR-133b overexpression regulated CRC cell progression and sensitivity to 5-FU by down-regulating ABCC5. Additionally, circ_0007031 knockdown suppressed tumor growth in vivo. Our current work had led to the identification of circ_0007031 knockdown that repressed CRC cell malignant progression and enhanced 5-FU sensitivity via regulating ABCC5 expression by sponging miR-133b.


2020 ◽  
Author(s):  
Peng Shen ◽  
Lili Qu ◽  
Jingjing Wang ◽  
Quchen Ding ◽  
Chuanwen Zhou ◽  
...  

Abstract Background Long intergenic non-protein coding RNA 342 (LINC00342) has been identified as a novel oncogene, however, the functional role of LINC00342 in colorectal cancer (CRC) remained unclear. Methods The expression of LINC00342 was detected by real-time PCR. Cell proliferation, migration and invasion and xenograft model were examined to analyze the biological functions of LINC00342 in vitro and in vivo. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were used to identify the target interactions between LINC00342, miR-19a-3p and aminopeptidase like 1 (NPEPL1). Results LINC00342 was highly expressed in CRC. Downregulation of LINC00342 inhibited cell proliferation and metastasis of CRC cells. Moreover, knocking down LINC00342 could weaken the tumor growth in vivo. Mechanistic investigation revealed that LINC00342 may sponge miR-19a-3p to regulate NPEPL1 expression. Further investigation indicated that the oncogenesis facilitated by LINC00342 was inhibited by NPEPL1 depletion.Conclusion LINC00342 promoted CRC progression by competitively binding miR-19a-3p with NPEPL1.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Peng Shen ◽  
Lili Qu ◽  
Jingjing Wang ◽  
Quchen Ding ◽  
Chuanwen Zhou ◽  
...  

Abstract Background Long intergenic non-protein coding RNA 00342 (LINC00342) has been identified as a novel oncogene. However, the functional role of LINC00342 in colorectal cancer (CRC) remains unclear. Methods The expression of LINC00342 is detected by real-time PCR (RT-PCR) analysis. Cell proliferation, migration and invasion and xenograft model are examined to analyze the biological functions of LINC00342 in vitro and in vivo using colony formation, would healing and transwell analyses. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays are used to identify the target interactions between LINC00342, miR-19a-3p and aminopeptidase like 1 (NPEPL1). Results LINC00342 was highly expressed in CRC. Down-regulation of LINC00342 inhibited cell proliferation and metastasis of CRC cells. Moreover, knocking down LINC00342 inhibited the tumor growth in vivo. Mechanistic investigation revealed that LINC00342 might sponge miR-19a-3p to regulate NPEPL1 expression. Further investigation indicated that the ontogenesis facilitated by LINC00342 was inhibited due to the depletion of NPEPL1. Conclusion LINC00342 promotes CRC progression by competitively binding miR-19a-3p with NPEPL1.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Yahang Liang ◽  
Jingbo Shi ◽  
Qingsi He ◽  
Guorui Sun ◽  
Lei Gao ◽  
...  

Abstract Background Colorectal cancer (CRC) is one of the most common cancers worldwide. Circular RNAs (circRNAs), a novel class of non-coding RNAs, have been confirmed to be key regulators of many diseases. With many scholars devoted to studying the biological function and mechanism of circRNAs, their mysterious veil is gradually being revealed. In our research, we explored a new circRNA, hsa_circ_0026416, which was identified as upregulated in CRC with the largest fold change (logFC = 3.70) of the evaluated circRNAs via analysing expression profiling data by high throughput sequencing of members of the GEO dataset (GSE77661) to explore the molecular mechanisms of CRC. Methods qRT-PCR and western blot analysis were utilized to assess the expression of hsa_circ_0026416, miR-346 and Nuclear Factor I/B (NFIB). CCK-8 and transwell assays were utilized to examine cell proliferation, migration and invasion in vitro, respectively. A luciferase reporter assay was used to verify the combination of hsa_circ_0026416, miR-346 and NFIB. A nude mouse xenograft model was also utilized to determine the role of hsa_circ_0026416 in CRC cell growth in vivo. Results Hsa_circ_0026416 was markedly upregulated in CRC patient tissues and plasma and was a poor prognosis in CRC patients. In addition, the area under the curve (AUC) of hsa_circ_0026416 (0.767) was greater than the AUC of CEA (0.670), CA19-9 (0.592) and CA72-4 (0.575). Functionally, hsa_circ_0026416 promotes cell proliferation, migration and invasion both in vitro and in vivo. Mechanistically, hsa_circ_0026416 may function as a ceRNA via competitively absorbing miR-346 to upregulate the expression of NFIB. Conclusions In summary, our findings demonstrate that hsa_circ_0026416 is an oncogene in CRC. Hsa_circ_0026416 promotes the progression of CRC via the miR-346/NFIB axis and may represent a potential biomarker for diagnosis and therapy in CRC.


2020 ◽  
Author(s):  
Peng Shen ◽  
Lili Qu ◽  
Jingjing Wang ◽  
Quchen Ding ◽  
Chuanwen Zhou ◽  
...  

Abstract Background Long intergenic non-protein coding RNA 00342 (LINC00342) has been identified as a novel oncogene. However, the functional role of LINC00342 in colorectal cancer (CRC) remains unclear. Methods The expression of LINC00342 is detected by real-time PCR (RT-PCR) analysis. Cell proliferation, migration and invasion and xenograft model are examined to analyze the biological functions of LINC00342 in vitro and in vivo using colony formation, would healing and transwell analyses. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays are used to identify the target interactions between LINC00342, miR-19a-3p and aminopeptidase like 1 (NPEPL1). Results LINC00342 was highly expressed in CRC. Down-regulation of LINC00342 inhibited cell proliferation and metastasis of CRC cells. Moreover, knocking down LINC00342 inhibited the tumor growth in vivo. Mechanistic investigation revealed that LINC00342 might sponge miR-19a-3p to regulate NPEPL1 expression. Further investigation indicated that the ontogenesis facilitated by LINC00342 was inhibited due to the depletion of NPEPL1.Conclusion LINC00342 promotes CRC progression by competitively binding miR-19a-3p with NPEPL1.


2020 ◽  
Author(s):  
Peng Shen ◽  
Lili Qu ◽  
Jingjing Wang ◽  
Quchen Ding ◽  
Chuanwen Zhou ◽  
...  

Abstract Background Long intergenic non-protein coding RNA 00342 (LINC00342) has been identified as a novel oncogene. However, the functional role of LINC00342 in colorectal cancer (CRC) remains unclear. Methods The expression of LINC00342 was detected by real-time PCR. Cell proliferation, migration and invasion and xenograft model were examined to analyze the biological functions of LINC00342 in vitro and in vivo. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were used to identify the target interactions between LINC00342, miR-19a-3p and aminopeptidase like 1 (NPEPL1). Results LINC00342 was highly expressed in CRC. Downregulation of LINC00342 inhibited cell proliferation and metastasis of CRC cells. Moreover, knocking down LINC00342 could weaken the tumor growth in vivo. Mechanistic investigation revealed that LINC00342 might sponge miR-19a-3p to regulate NPEPL1 expression. Further investigation indicated that the oncogenesis facilitated by LINC00342 was inhibited due to the depletion of NPEPL1.Conclusion LINC00342 promoted CRC progression by competitively binding miR-19a-3p with NPEPL1.


Author(s):  
Kunpeng Liu ◽  
Yuhua Mou ◽  
Xiufang Shi ◽  
Tingkun Liu ◽  
Zhanfeng Chen ◽  
...  

Aim: Colorectal cancer (CRC) has developed into the third leading reason of cancer-associated death worldwide. Studies has confirmed that circular RNAs (circRNAs) sponge microRNAs (miRNAs) to regulate the function of downstream genes. This study aimed to expound the underlying mechanism of circRNA 100146 in CRC. Methods: The expression of circRNA 100146, miR-149 and high mobility group A2 (HMGA2) was detected by quantitative real time PCR (RT-qPCR). A series of bio-functional effects (cell viability, apoptosis, migration/invasion) were evaluated by methyl thiazolyl tetrazolium (MTT), flow cytometry, transwell. Protein level was measured by Western blot assay. The xenograft model was established for in vivo experiments. The interactions among circRNA 100146, miR-149 and HMGA2 were evaluated by dual-luciferase reporter assay, RNA immunoprecipitation assays, or RNA pulldown assay. Results: CircRNA 100146 was upregulated in CRC tissues and cells. CircRNA 100146 knockdown inhibited cell proliferation, promoted apoptosis and suppressed migration and invasion in vitro, and impeded tumor growth in vivo. Also, miR-149 was negalitively regulated by circRNA 100146, and targeted to HMGA2 and mediated its expression. Moreover, miR-149 interference abrogated the activities of silenced circRNA 100146 in proliferation, apoptosis, migration and invasion. Furthermore, HMGA2 overexpression abated the effects above caused by circRNA 100146 silencing, while the mutant on miR-149 binding sites in HMGA2 3’UTR lead to it losing this ability. Conclusion: CircRNA 100146 knockdown repressed proliferation, enhanced apoptosis and hindered migration and invasion in SW620 and SW480 cells through targeting miR-149/HMGA2 axis.


Sign in / Sign up

Export Citation Format

Share Document