scholarly journals Study on the Color-Compensation Effect of Composite Orange-Red Quantum Dots in WLED Application

2020 ◽  
Author(s):  
Xiaoyue Hu ◽  
Yangyang Xie ◽  
Chong Geng ◽  
Shu Xu ◽  
Wengang Bi

Abstract Quantum dots (QDs) as emerging light-converting materials show the advantage of enhancing color quality of white light-emitting diode (WLED). However, WLEDs employing narrow-emitting monochromic QDs usually present unsatisfactory color rendering in the orange region. Herein, composite orange-red QDs (composite-QDs) are developed through mixing CdSe/ZnS based orange QDs (O-QDs) and red QDs (R-QDs) to compensate the orange-red light for WLEDs. We investigated the effect of self-absorption and fluorescence resonance energy transfer (FRET) process in composite-QDs on the spectral controllability and fluorescent quenching in WLEDs. The concentration and donor/acceptor ratios were also taken into account to analyze the FRET efficiency and help identify suitable composite-QDs for color compensation in the orange-red light region. As the result, the optimized composite-QDs effectively improve the color rendering index of the WLED compared with monochromatic QDs.

2020 ◽  
Author(s):  
Xiaoyue Hu ◽  
Yangyang Xie ◽  
Chong Geng ◽  
Shu Xu ◽  
Wengang Bi

Abstract Quantum dots (QDs) as emerging light-converting materials show the advantage of enhancing color quality of white light-emitting diode (WLED). However, WLEDs employing narrow-emitting monochromic QDs usually present unsatisfactory color rendering in the orange region. Herein, orange-red emitting polychromic hybrid QDs (hybrid-QDs) are developed through mixing CdSe/ZnS based orange QDs (O-QDs) and red QDs (R-QDs) to compensate the orange-red light for WLEDs. We investigated the effect of self-absorption and fluorescence resonance energy transfer (FRET) process in hybrid-QDs on the spectral controllability and fluorescent quenching in WLEDs. The concentration and donor/acceptor ratios were also taken into account to analyze the FRET efficiency and help identify suitable hybrid-QDs for color compensation in the orange-red light region. As the result, the optimized hybrid-QDs effectively improve the color rendering index of the WLED compared with monochromatic QDs at the same color coordinates.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Lung-Chien Chen ◽  
Yi-Tsung Chang ◽  
Ching-Ho Tien ◽  
Yu-Chun Yeh ◽  
Zong-Liang Tseng ◽  
...  

AbstractThis work presents a method for obtaining a color-converted red light source through a combination of a blue GaN light-emitting diode and a red fluorescent color conversion film of a perovskite CsPbI3/TOPO composite. High-quality CsPbI3 quantum dots (QDs) were prepared using the hot-injection method. The colloidal QD solutions were mixed with different ratios of trioctylphosphine oxide (TOPO) to form nanowires. The color conversion films prepared by the mixed ultraviolet resin and colloidal solutions were coated on blue LEDs. The optical and electrical properties of the devices were measured and analyzed at an injection current of 50 mA; it was observed that the strongest red light intensity was 93.1 cd/m2 and the external quantum efficiency was 5.7% at a wavelength of approximately 708 nm when CsPbI3/TOPO was 1:0.35.


Open Physics ◽  
2011 ◽  
Vol 9 (4) ◽  
Author(s):  
Junli Huang ◽  
Liya Zhou ◽  
Yuwei Lan ◽  
Fuzhong Gong ◽  
Qunliang Li ◽  
...  

AbstractEu3+-doped CaZrO3 phosphor with perovskite-type structure was synthesized by the high temperature solid-state method. The samples were characterized by X-ray diffraction, scanning electron microscopy, fluorescence spectrophotometer and UV-vis spectrophotometer, respectively. XRD analysis showed that the formation of CaZrO3 was at the calcinations temperature of 1400°C. The average diameter of CaZrO3 with 4 mol% doped-Eu3+ was 2µm. The PL spectra demonstrated that CaZrO3:Eu3+ phosphor could be excited effectively in the near ultraviolet light region (397 nm) and emitted strong red-emission lines at 616 nm corresponding to the forced electric dipole 5 D 0 → 7 F 2 transitions of Eu3+. Meanwhile, the light-emitting diode was fabricated with the Ca0.96ZrO3:Eu0.043+ phosphor, which can efficiently absorb ∼ 400 nm irradiation and emit red light. Therefore Ca0.96ZrO3:Eu0.043+ may have applications for a near ultraviolet InGaN chip-based white light-emitting diode.


Nanophotonics ◽  
2016 ◽  
Vol 5 (4) ◽  
pp. 565-572 ◽  
Author(s):  
Wei Chen ◽  
Kai Wang ◽  
Junjie Hao ◽  
Dan Wu ◽  
Jing Qin ◽  
...  

AbstractIn this research, we have developed an approach by incorporating quantum dots (QDs) with red emission into mesoporous silica microspheres through a non-chemical process and obtained luminescent microspheres (LMS). Owing to the lattice structure of LMS, QDs were effectively protected from intrinsic aggregation in matrix and surface deterioration by encapsulant, oxygen and moisture. The LMS composite has therefore maintained large extent luminescent properties of QDs, espe-cially for the high quantum efficiency. Moreover, the fabricated white light emitting diode (WLED) utilizing LMS and YAG:Ce yellow phosphor has demonstrated excellent light performance with color coordinates around (x = 0.33, y = 0.33), correlated color temperature between 5100 and 5500 K and color rendering index of Ra = 90, R9 = 95. The luminous efficiency of the WLED has reached up to a new record of 142.5 lm/W at 20 mA. LMS provide a promising way to practically apply QDs in lightings and displays with high efficiency as well as high stability.


2021 ◽  
Author(s):  
Lung-Chien Chen ◽  
Yen-Hung Tien ◽  
Jianjun Tian

Abstract In this work, trioctylphosphine oxide (TOPO) ligand is employed to improve the quality of CsPbBr1.2I1.8 quantum dots (QDs) films. Lead nitrate (Pb(NO3)2) is also used to passivate the surface of the films. The study of ligand and surface passivation on the luminous efficiency of red light-emitting diode (LED) is discussed. The CsPbBr1.2I1.8 QDs films co-doped with TOPO and Pb(NO3)2 can effectively improve the performance of the CsPbBr1.2I1.8 QDs LEDs due to reduction of non-radiation recombination of the carriers and smooth morphology in the active layer, thus improving the injection and transportation capabilities of carriers. As a result, the highest luminosity and current efficiency are 502.7 cd/m2 and 0.175 cd/A, respectively.


2016 ◽  
Vol 09 (03) ◽  
pp. 1650049
Author(s):  
Wei Xia ◽  
Xiyan Zhang ◽  
Liping Lu

Silicate garnet phosphors (Lu[Formula: see text]Ce[Formula: see text]Ca[Formula: see text]Mg2Si3O[Formula: see text] with [Formula: see text], 0.05, 0.1, and 0.15 were prepared by high-temperature solid-state reaction in a reducing atmosphere. The crystal structure, photoluminescence and luminescence of the phosphors were investigated. The optimum excitation peak wavelength of the phosphors ranged from 450[Formula: see text]nm to 490[Formula: see text]nm, matching the emission spectra of a blue light-emitting diode chip. The phosphors emit orange-red light after excitation that can be tuned from 589[Formula: see text]nm to 597[Formula: see text]nm by changing the concentration of calcium ions. In addition, their emission made them suitable for use in warm-white LEDs with a high-color rendering index.


2009 ◽  
Vol 16 (04) ◽  
pp. 631-634 ◽  
Author(s):  
CHENG-HAO KO ◽  
JIAN-SHIAN LIN ◽  
CHANG-TAI CHEN ◽  
NIEN-PO CHEN

A two-dimensional sub-wavelength grating (SWG) is fabricated on light-emitting diodes (LEDs). The SWG is simulated by finite-difference time-domain (FDTD) method. The SWG surface has silver-coated dielectric materials with sinusoidal structures, 175 nm period and 125 m depth of groove. When the incident wave is in the red light region of 600–700nm, the transmission efficiency of TM propagated light will reach 0.82. If this SWG structure is applied in LCD direct backlight module, the lower polarization piece can be replaced and fluorescence efficiency of LED can be improved.


2013 ◽  
Vol 6 (1) ◽  
pp. 252-258 ◽  
Author(s):  
Abdelhay Aboulaich ◽  
Martyna Michalska ◽  
Raphaël Schneider ◽  
Audrey Potdevin ◽  
Jérôme Deschamps ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document