scholarly journals MicroRNA-103a curtails the stemness of non-small cell lung cancer cells by binding to OTUB1 through the Hippo signaling pathway

2020 ◽  
Author(s):  
Zhenzhen Hu ◽  
Dan Xiao ◽  
Tingting Qiu ◽  
Jun Li ◽  
Zhentian Liu

Abstract Background: Although dysfunction of microRNA-103a (miR-103a) has been implicated in various cancers, its relevance in non-small cell lung cancer (NSCLC) is unsettled. This study was designed with an aim to examine the molecular mechanism underlying the regulatory role of miR-103a in NSCLC. Methods: Kaplan-Meier analysis was carried out to study the correlation between overall survival of NSCLC patients and miR-103a expression. RT-qPCR and Western blot were applied to evaluate the expression of relevant genes in tissues and cells. Sphere formation, MTS, flow cytometry as well as Transwell assays were conducted for characterizing the stemness. Dual-luciferase reporter gene assay was applied to clarify the binding relationship between miR-103a and ovarian tumor domain-containing ubiquitin aldehyde binding protein 1 (OTUB1). Results: miR-103a expression was diminished in NSCLC tissues and cells, whereas OTUB1 expression was increased. The expression of miR-103a and OTUB1 mRNA was significantly negatively correlated in NSCLC tissues. After overexpression of miR-103a, the cell viability and stemness were diminished, while the cycle arrest and apoptosis rate were facilitated, and the expression of p-YAP decreased significantly. The opposite trend was observed after miR-103a silencing. miR-103a lowered the expression of OTUB1, while overexpression of OTUB1 blocked the inhibition effects of miR-103a on NSCLC. Conclusion: miR-103a/OTUB1/Hippo axis plays a possible role in modulating the malignant behavior and stemness of cells, which might function as a possible therapeutic option for management of NSCLC.

2020 ◽  
Author(s):  
Zhenzhen Hu ◽  
Dan Xiao ◽  
Tingting Qiu ◽  
Jun Li ◽  
Zhentian Liu

Abstract Background: Although dysfunction of microRNA-103a (miR-103a) has been implicated in various cancers, its relevance in non-small cell lung cancer (NSCLC) is unsettled. This study was designed with an aim to examine the molecular mechanism underlying the regulatory role of miR-103a in NSCLC. Methods: Kaplan-Meier analysis was carried out to study the correlation between overall survival of NSCLC patients and miR-103a expression. RT-qPCR and Western blot were applied to evaluate the expression of relevant genes in tissues and cells. Sphere formation, MTS, flow cytometry as well as Transwell assays were conducted for characterizing the stemness. Dual-luciferase reporter gene assays were applied to clarify the binding relationship between miR-103a and ovarian tumor domain-containing ubiquitin aldehyde binding protein 1 (OTUB1). Results: miR-103a expression was diminished in NSCLC tissues and cells, whereas OTUB1 expression was increased. Higher miR-103 expression indicated better prognosis for patients with NSCLC. After overexpression of miR-103a, the cell viability and stemness were diminished, while the cycle arrest and apoptosis rate were facilitated, and the expression of p-YAP decreased significantly. The opposite trends were observed after miR-103a silencing. miR-103a lowered the expression of OTUB1, while overexpression of OTUB1 blocked the inhibition effects of miR-103a on NSCLC. Conclusion: miR-103a/OTUB1/Hippo axis plays a possible role in modulating the malignant behavior and stemness of cells which might function as a possible therapeutic option for the management of NSCLC.


2020 ◽  
Author(s):  
Zhenzhen Hu ◽  
Dan Xiao ◽  
Tingting Qiu ◽  
Jun Li ◽  
Zhentian Liu

Abstract Background Although dysfunction of microRNA-103a (miR-103a) has been implicated in various cancers, its relevance in non-small cell lung cancer (NSCLC) is unsettled. This study was designed with an aim to examine the molecular mechanism underlying the regulatory role of miR-103a in NSCLC.Methods Kaplan-Meier analysis was carried out to study the correlation between overall survival of NSCLC patients and miR-103a expression. RT-qPCR and Western blot were applied to evaluate the expression of relevant genes in tissues and cells. Sphere formation, MTS, flow cytometry as well as Transwell assays were conducted for characterizing the stemness. Dual-luciferase reporter gene assays were applied to clarify the binding relationship between miR-103a and ovarian tumor domain-containing ubiquitin aldehyde binding protein 1 (OTUB1).Results miR-103a expression was diminished in NSCLC tissues and cells, whereas OTUB1 expression was increased. Higher miR-103 expression indicated better prognosis for patients with NSCLC. After overexpression of miR-103a, the cell viability and stemness were diminished, while the cycle arrest and apoptosis rate were facilitated, and the expression of p-YAP decreased significantly. The opposite trends were observed after miR-103a silencing. miR-103a lowered the expression of OTUB1, while overexpression of OTUB1 blocked the inhibition effects of miR-103a on NSCLC.Conclusion miR-103a/OTUB1/Hippo axis plays a possible role in modulating the malignant behavior and stemness of cells which might function as a possible therapeutic option for the management of NSCLC.


2019 ◽  
Vol 39 (1) ◽  
Author(s):  
Guo-Hua Zhou ◽  
Yi-Yu Lu ◽  
Jing-Lian Xie ◽  
Zi-Kun Gao ◽  
Xiao-Bo Wu ◽  
...  

Abstract Non-small cell lung cancer (NSCLC) is one of the most fatal types of cancer with significant mortality and morbidity worldwide. MicroRNAs (miRs) have been confirmed to have positive functions in NSCLC. In the present study, we try to explore the role of miR-758 in proliferation, migration, invasion, and apoptosis of NSCLC cells by regulating high-mobility group box (HMGB) 3 (HMGB3.) NSCLC and adjacent tissues were collected. Reverse transcription quantitative PCR (RT-qPCR) was employed to detect expression of miR-758 and HMGB3 in NSCLC and adjacent tissues, in BEAS-2B cells and NSCLC cell lines. The targetted relationship between miR-758 and HMGB3 was identified by dual luciferase reporter gene assay. The effects of miR-758 on proliferation, migration, invasion, cell cycle, and apoptosis of A549 cells. MiR-758 expression was lower in NSCLC tissues, which was opposite to HMGB3 expression. The results also demonstrated that miR-758 can target HMGB3. The cells transfected with miR-758 mimic had decreased HMGB3 expression, proliferation, migration, and invasion, with more arrested cells in G1 phase and increased apoptosis. Our results supported that the overexpression of miR-758 inhibits proliferation, migration, and invasion, and promotes apoptosis of NSCLC cells by negative regulating HMGB2. The present study may provide a novel target for NSCLC treatment.


2020 ◽  
Vol 19 ◽  
pp. 153303382097164
Author(s):  
Zhenzhen Hu ◽  
Dan Xiao ◽  
Tingting Qiu ◽  
Jun Li ◽  
Zhentian Liu

Objective: Although microRNA-103a (miR-103a) dysfunction has been implicated in various cancers, its relevance to non-small cell lung cancer (NSCLC) has not been clarified. This study was conducted to examine the molecular mechanism underlying the regulatory role of miR-103a in NSCLC. Methods: Kaplan–Meier analysis was carried out to assess the relationship between overall survival of NSCLC patients and miR-103a expression. Reverse-transcription quantitative polymerase chain reaction and western blot analyses were applied to evaluate the expression of relevant genes in tissues and cells. Sphere formation, MTS, flow cytometry, and Transwell assays were performed to characterize stemness. Dual luciferase reporter gene assays were used to clarify the binding relationship between miR-103a and ovarian tumor domain-containing ubiquitin aldehyde binding protein 1 (OTUB1). Finally, western blot analysis was used to assess the involvement of the Hippo pathway in NSCLC. Results: In NSCLC tissues and cells, miR-103a was expressed at low levels, whereas OTUB1 was expressed at high levels. Higher miR-103 expression levels were associated with a better prognosis for patients with NSCLC. When miR-103a was overexpressed, cell viability and stemness decreased, whereas apoptosis and cell cycle arrest were facilitated. The expression of phosphorylated YAP also decreased significantly. Opposite trends were observed after miR-103a silencing. OTUB1 expression and YAP phosphorylation decreased in the presence of miR-103a, and OTUB1 overexpression blocked the inhibitory effects of miR-103a on NSCLC cells. Conclusion: The miR-103a/OTUB1/Hippo axis may play a role in modulating the malignant behavior and stemness of cancer stem cells and thus could be a potential therapeutic target for the management of NSCLC.


2020 ◽  
Vol 29 (3) ◽  
pp. 417-427 ◽  
Author(s):  
Tao Ji ◽  
Yanan Zhang ◽  
Zheng Wang ◽  
Zuoxu Hou ◽  
Xuhui Gao ◽  
...  

BACKGROUND: Long non-coding RNA (lncNRA) forkhead box D3 antisense RNA 1 (FOXD3-AS1) has been proved to promote or suppress the occurrence and development of multiple types of human tumors. However, the function and mechanism of FOXD3-AS1 in non-small cell lung cancer (NSCLC) are scarcely understood. METHODS: qRT-PCR was used for detecting FOXD3-AS1, miR-150 and SRC kinase signaling inhibitor 1 (SRCIN1) mRNA expression in NSCLC tissues, and the relationship between pathological characteristics of NSCLC patients and FOXD3-AS1 expression level was analyzed. With human NSCLC cell lines H1299 and A549 as cell models, CCK-8 and BrdU assays were employed for detecting cancer cell proliferation, and Transwell assay was employed for detecting cell invasion ability. Dual luciferase reporter gene assay and RNA immunoprecipitation (RIP) assay were used for the verification of the targeting relationshipe between FOXD3-AS1 and miR-150, and Western blot was employed for detecting SRCIN1 protein expression. RESULTS: FOXD3-AS1 expression was significantly reduced in NSCLC tissues and cell lines, and low expression of FOXD3-AS1 was closely related to positive lymph node metastasis and relatively high tumor grade. FOXD3-AS1 over-expression inhibited the proliferation and invasion of H1299 cell lines, while its knockdown promoted the proliferation and invasion of A549 cells. Additionally, it was confirmed that FOXD3-AS1 suppressed the expression of miR-150 by targeting it, and up-regulated the expression of SRCIN1. CONCLUSIONS: FOXD3-AS1 indirectly enhances the expression of SRCIN1 by targeting miR-150, thereby inhibiting NSCLC progression.


2020 ◽  
Author(s):  
Tengfei Chen ◽  
Yali Liu ◽  
Chang Li ◽  
Chun Xu ◽  
Cheng Ding ◽  
...  

Abstract Background: Non-small cell lung cancer (NSCLC) is the most malignant cancers worldwide, but the pathogenesis is not completely known. In this study, we explored the function and mechanism of exosomes transferring miR-3180-3p in NSCLC progression.Method: The expression of miR-3180-3p of NSCLC tissues and para-carcinoma tissues was from the GEO database (GEO: GSE53882). The exosomes derived from A549 cells were identified. The proliferation, migration and invasion were measured after treatment with exosomal miR-3180-3p or transfected by miR-3180-3p mimics. The relationship between miR-3180-3p and forkhead box P4 (FOXP4) was predicted by bioinformatics tool and measured dual-luciferase reporter gene assay and western blotting. At last, mouse xenograft model of NSCLC cells was established to verify the function of exosomal miR-3180-3p in vivo.Results: We found that miR-3180-3p decreased in both NSCLC cell lines and patient tissues. Overexpression of miR-3180-3p or treatment with exosomal miR-3180-3p significantly repressed the cell proliferation and metastasis in NSCLC cell lines. Subsequently, we found miR-3180-3p performed function by downregulating FOXP4 protein expression. Furthermore, the volume and weight of nude mice tumor which expressed exosomal miR-3180-3p was significantly reduced. Conclusion: Exosomal miR-3180-3p suppresses NSCLC progression by downregulating FOXP4 expression.


2021 ◽  
Vol 20 ◽  
pp. 153303382199000
Author(s):  
Fang Cui ◽  
Peng Luo ◽  
Yao Bai ◽  
Jiangping Meng

Background: Long non-coding RNA FGD5 antisense RNA 1 (FGD5-AS1), identified to be a carcinogenic lncRNA, exhibits a regulatory role in some malignancies including non-small cell lung cancer (NSCLC). The aim of the present research is to decipher the function and underlying mechanism of FGD5-AS1 in progression of NSCLC. Methods: Expression of FGD5-AS1, miR-493-5p and DEAD-box protein 5 (DDX5) in NSCLC tissues and cells was quantified utilizing qRT-PCR. Cell proliferation was assessed by CCK-8 method. Scratch healing test and Transwell assay were used for assaying cell migration and invasion. Expressions of DDX5 and epithelial-mesenchymal transition (EMT)-related proteins were examined by Western blot. Additionally, targeting relationships between FGD5-AS1 and miR-493-5p, miR-493-5p and DDX5 were verified by dual-luciferase reporter gene assay. Results: Expression of FGD5-AS1 in NSCLC tissues and cell lines was up-regulated. Expression of FGD5-AS1 was in association with enlarged tumor size and lymph node metastasis of the patients. Knockdown of FGD5-AS1 led to the inhibition of proliferation, migration, invasion and EMT of NSCLC cells. FGD5-AS1 directly targeted miR-493-5p, while DDX5 was the target of miR-493-5p in NSCLC cells. Additionally, FGD5-AS1 could positively regulate the expression of DDX5 via suppressing miR-493-5p. Conclusion: FGD5-AS1 facilitates the proliferation, migration, invasion and EMT of NSCLC cells by sponging miR-493-5p and up-regulating DDX5.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Juan Ma ◽  
Haiyan Miao ◽  
Haiyun Zhang ◽  
Jingjing Ren ◽  
Shengyan Qu ◽  
...  

Abstract Background Long non-coding RNA growth arrest specific 5 (GAS5) is a regulator in non-small cell lung cancer (NSCLC) progression. Nonetheless, the mechanism by which GAS5 exerts its biological function in NSCLC cells remains unclear. Methods GAS5, miR-221-3p relative expression levels in NSCLC tissues and cells were examined by qPCR. After gain-of-function and loss-of-function models were established, the viability of H1299 and A549 cells were examined by CCK-8 and EdU assays. Cell migration and invasion were examined by the Transwell experiment. The binding sequence of GAS5 for miR-221-3p was confirmed by the dual-luciferase reporter gene experiment. The regulatory function of GAS5 and miR-221-3p on IRF2 was investigated by Western blot. Results GAS5 expression was down-modulated in NSCLC tissues and cell lines. GAS5 overexpression restrained the proliferation, migration and invasion of NSCLC cells, while miR-221-3p, which was targeted and negatively modulated by GAS5, worked oppositely. Restoration of miR-221-3p markedly reversed the effects of GAS5 on NSCLC cells. Additionally, GAS5 increased IRF2 expression in NSCLC cells by repressing miR-221-3p. Conclusions GAS5 blocks the progression of NSCLC partly via increasing IRF2 expression level via repressing miR-221-3p.


2021 ◽  
pp. 1-14
Author(s):  
Bin Zhang ◽  
Zhou Jin ◽  
Hao Zhang

BACKGROUND: The disorder of LINC01207 has a significant regulatory effect on cancers, nevertheless its role in non-small cell lung cancer (NSCLC) have not been illustrated. This study investigated the regulatory effect of LINC01207 on NSCLC and clarify its molecular mechanism. METHODS: Bioinformatics analysis was used to find the target lncRNA, miRNA and mRNA. LncBase and TargetScan databases predicted the relationship between LINC01207, miR-525-5p and ARHGAP11A. Dual-luciferase reporter gene assay and RNA binding protein immunoprecipitation assay were used to verify the binding relationship between genes. Fluorescence in situ hybridization assay was used to localize the expression of LINC01207 in NSCLC tissue. qRT-PCR and Western blot assays were used to measure the expression of LINC01207, miR-525-5p and ARHGAP11A. CCK-8 assay, Transwell assay and flow cytometry assay were used to detect NSCLC cell abilities. Mouse xenograft models further determined the effect of LINC01207 on the growth of NSCLC in vivo. RESULTS: LINC01207 was up-regulated in NSCLC tissue and cells, which was mainly localized in the cytoplasm. LINC01207 knockdown could inhibit the proliferation, migration and invasion of cancer cells and induce cell apoptosis. In addition, silencing LINC01207 could suppress tumor growth in vivo. LINC01207 could sponge and inhibit the expression of miR-525-5p in NSCLC cells, and inhibiting LINC01207 and miR-525-5p simultaneously could reverse the effect of miR-525-5p on the progression of NSCLC cells. Further study on downstream target genes showed that miR-525-5p could restrain the expression of ARHGAP11A, and then affect the progression of NSCLC. LINC01207 acting as a competing endogenous RNA (ceRNA) could regulate the expression of ARHGAP11A by competitively binding with miR-525-5p. CONCLUSION: LINC01207 regulates the progression of NSCLC by regulating the miR-525-5p/ARHGAP11A axis as a ceRNA and plays a carcinogenic role. In conclusion, our study elucidates the mechanism of LINC01207 regulating the progression of NSCLC, and provides a new idea for the diagnosis and treatment of NSCLC guided by lncRNA.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tingting Sun ◽  
Jing Chen ◽  
Xuechao Sun ◽  
Guonian Wang

Abstract Backgrounds As previously reported, midazolam anesthesia exerts tumor-suppressing effects in non-small cell lung cancer (NSCLC), but the regulating effects of this drug on cisplatin-resistance in NSCLC have not been studied. Thus, we designed this study to investigate this issue and preliminarily delineate the potential molecular mechanisms. Methods We performed MTT assay and trypan blue staining assay to measure cell proliferation and viability. Cell apoptosis was examined by FCM. qRT-PCR and immunoblotting were performed to determine the expression levels of genes. The targeting sites between genes were predicted by bioinformatics analysis and were validated by dual-luciferase reporter gene system assay. Mice tumor-bearing models were established and the tumorigenesis was evaluated by measuring tumor weight and volume. Immunohistochemistry (IHC) was used to examine the pro-proliferative Ki67 protein expressions in mice tumor tissues. Results The cisplatin-resistant NSCLC (CR-NSCLC) cells were treated with high-dose cisplatin (50 μg/ml) and low-dose midazolam (10 μg/ml), and the results showed that midazolam suppressed cell proliferation and viability, and promoted cell apoptosis in cisplatin-treated CR-NSCLC cells. In addition, midazolam enhanced cisplatin-sensitivity in CR-NSCLC cell via modulating the miR-194-5p/hook microtubule-tethering protein 3 (HOOK3) axis. Specifically, midazolam upregulated miR-194-5p, but downregulated HOOK3 in the CR-NSCLC cells, and further results validated that miR-194-5p bound to the 3’ untranslated region (3’UTR) of HOOK3 mRNA for its inhibition. Also, midazolam downregulated HOOK3 in CR-NSCLC cells by upregulating miR-194-5p. Functional experiments validated that both miR-194-5p downregulation and HOOK3 upregulation abrogated the promoting effects of midazolam on cisplatin-sensitivity in CR-NSCLC cells. Conclusions Taken together, this study found that midazolam anesthesia reduced cisplatin-resistance in CR-NSCLC cells by regulating the miR-194-5p/HOOK3 axis, implying that midazolam could be used as adjuvant drug for NSCLC treatment in clinical practices.


Sign in / Sign up

Export Citation Format

Share Document