scholarly journals Placenta-Specific Protein 1 Enhances Liver Metastatic Potential and is Associated with the PI3K/AKT/NF-κB Signaling Pathway in Colorectal Cancer

2020 ◽  
Author(s):  
Jiachi Ma ◽  
Lei Li ◽  
Jun Du ◽  
Chengwu Pan ◽  
Chensong Zhang ◽  
...  

Abstract Abstract Background: To better explore the underlying mechanism of liver metastatic formation by placenta-specific protein 1 (PLAC1) in human colorectal cancer, we investigated the proliferation, invasion and angiogenic capabilities of human colorectal cancer cell lines with different liver metastatic potentials as well as the mechanism of action of PLAC1 in the metastatic process. Methods: The expression of PLAC1 was detected by reverse transcriptase PCR, western blot and real-time PCR. The effect of PLAC1 on metastatic potential was determined by proliferation, invasion, and angiogenesis assays, including an in vitro coculture system consisting of cancer cells and vascular endothelial cells that were used to detect the relationship between cancer cells and angiogenesis. In addition, we also determined PLAC1 downstream targets that preferentially contribute to the metastatic process. Results: PLAC1 was expressed in HT-29, WiDr and CaCo-2 colorectal cancer cells but not in Colo320 colorectal cancer cells. PLAC1 not only enhanced significantly the proliferation of CoLo320 and human umbilical vein endothelial cells (HUVECs), but also promoted the invasion of CoLo320 cells. The angiogenesis of HUVECs was enhanced by PLAC1 in a dose-dependent manner. In cocultured systems, angiogenesis was significantly increased by coculture with HT-29 cells. In addition, PLAC1 could promote angiogenesis in coculture with HT-29 cells. Furthermore, PLAC1-enhanced metastatic potential of colorectal cancer cells was dependent on activation of the PI3K/Akt/NF-κB pathway. Conclusions: The activation of PI3K/Akt/NF-κB signaling by PLAC1 may be critical for the metastasis of colorectal cancer cells. According to our results, we suggest that modification of PLAC1 function might be a promising new therapeutic approach to inhibit the aggressive spread of colorectal cancer.

2020 ◽  
Author(s):  
Jiachi Ma ◽  
Lei Li ◽  
Jun Du ◽  
Chengwu Pan ◽  
Chensong Zhang ◽  
...  

Abstract Background To better explore the underlying mechanism of liver metastatic formation by placenta-specific protein 1 (PLAC1) in human colorectal cancer, we investigated the proliferation, invasion and angiogenic capabilities of human colorectal cancer cell lines with different liver metastatic potentials as well as the mechanism of action of PLAC1 in the metastatic process. Methods The expression of PLAC1 was detected by reverse transcriptase PCR, western blot and real-time PCR. The effect of PLAC1 on metastatic potential was determined by proliferation, invasion, and angiogenesis assays, including an in vitro coculture system consisting of cancer cells and vascular endothelial cells that were used to detect the relationship between cancer cells and angiogenesis. In addition, we also determined PLAC1 downstream targets that preferentially contribute to the metastatic process. Results PLAC1 was expressed in HT-29, WiDr and CaCo-2 colorectal cancer cells but not in Colo320 colorectal cancer cells. PLAC1 could not only significantly enhance the proliferation of CoLo320 and human umbilical vein endothelial cells (HUVECs) but could also promote the invasion of CoLo320 cells. The angiogenesis of HUVECs was enhanced by PLAC1 in a dose-dependent manner. In cocultured systems, angiogenesis was significantly increased by coculture with HT-29 cells. In addition, PLAC1 could promote angiogenesis in coculture with HT-29 cells. Furthermore, PLAC1-enhanced metastatic potential of colorectal cancer cells was dependent on activation of the PI3K/Akt/NF-κB pathway. Conclusions The activation of PI3K/Akt/NF-κB signaling by PLAC1 may be critical for the metastasis of colorectal cancer cells. According to our results, we suggest that modification of PLAC1 function might be a promising new therapeutic approach to inhibit the aggressive spread of colorectal cancer.


2019 ◽  
Author(s):  
JIachi Ma ◽  
Shoukai Zhang ◽  
Danru Liang ◽  
Lei Li ◽  
Jun Du ◽  
...  

Abstract Background: To better explore the underlying mechanism of liver metastatic formation by placenta-specific protein 1 (PLAC1) in human colorectal cancer, we investigated the proliferation, invasion and angiogenic capabilities of human colorectal cancer cell lines with different liver metastatic potentials as well as the mechanism of action of PLAC1 in the metastatic process. Methods: The expression of PLAC1 was detected by reverse transcriptase PCR, western blot and real-time PCR. The effect of PLAC1 on metastatic potential was determined by proliferation, invasion, and angiogenesis assays, including an in vitro coculture system consisting of cancer cells and vascular endothelial cells that were used to detect the relationship between cancer cells and angiogenesis. In addition, we also determined PLAC1 downstream targets that preferentially contribute to the metastatic process. Results: PLAC1 was expressed in HT-29, WiDr and CaCo-2 colorectal cancer cells but not in Colo320 colorectal cancer cells. PLAC1 could not only significantly enhance the proliferation of CoLo320 and human umbilical vein endothelial cells (HUVECs) but could also promote the invasion of CoLo320 cells. The angiogenesis of HUVECs was enhanced by PLAC1 in a dose-dependent manner. In cocultured systems, angiogenesis was significantly increased by coculture with HT-29 cells. In addition, PLAC1 could promote angiogenesis in coculture with HT-29 cells. Furthermore, PLAC1-enhanced metastatic potential of colorectal cancer cells was dependent on activation of the PI3K/Akt/NF-κB pathway. Conclusions: The activation of PI3K/Akt/NF-κB signaling by PLAC1 may be critical for the metastasis of colorectal cancer cells. According to our results, we suggest that modification of PLAC1 function might be a promising new therapeutic approach to inhibit the aggressive spread of colorectal cancer.


2020 ◽  

Objectives: This study aimed to investigate the potential function of miR-214 in the apoptosis induction by targeting p53 in human colorectal cancer cells (CRC) in combination with doxorubicin (DOX). Methods: miR-214 mimics were transfected to HT-29 CRC cells. Following that, the transfected cells were treated with DOX. Cell viability, apoptosis, and migration were evaluated by MTT, flow cytometry, and scratch-wound motility assays, respectively. Furthermore, the expression level of miR-214 and p53 was evaluated by qRT-PCR. Results: miR-214 transfection significantly inhibited the cell proliferation rate (P<0.05), induced apoptosis (P<0.05), and harnessed migration (P<0.05) in the HT-29 cells after 48 h. Furthermore, more effectiveness was observed in combination with DOX. Additionally, miR-214 transfection led to a reduction in p53 expression offering that it might be a potential target for miR-214. Conclusion: In conclusion, miR-214 sensitizes HT-29 cells to doxorubicin by targeting p53 indicating the significant role of this miRNA in colorectal cancer chemotherapy.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Heui Min Lim ◽  
Jongsung Lee ◽  
Myeong Jin Nam ◽  
See-Hyoung Park

Acetylshikonin, a naphthoquinone, is a pigment compound derived from Arnebia sp., which is known for its anti-inflammatory potential. However, its anticarcinogenic effect has not been well investigated. Thus, in this study, we focused on investigating its apoptotic effects against HCT-15 and LoVo cells, which are human colorectal cancer cells. MTT assay, cell counting assay, and colony formation assay have shown acetylshikonin treatment induced cytotoxic and antiproliferative effects against colorectal cancer cells in a dose- and time-dependent manner. DNA fragmentation was observed via terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Also, the increase of subG1 phase in cell cycle arrest assay and early/late apoptotic rates in annexin V/propidium iodide (PI) double staining assay was observed, which indicates an apoptotic potential of acetylshikonin against colorectal cancer cells. 2 ′ ,7 ′ -Dichlorofluorescin diacetate (DCF-DA) staining was used to evaluate reactive oxygen species (ROS) generation in acetylshikonin-treated colorectal cancer cells. Fluorescence-activated cell sorting (FACS) analysis showed that acetylshikonin induced an increase in reactive oxygen species (ROS) levels and apoptotic rate in a dose- and time-dependent manner in HCT-15 and LoVo cells. In contrast, cotreatment with N-acetyl cysteine (NAC) has reduced ROS generation and antiproliferative effects in colorectal cancer cells. Western blotting analysis showed that acetylshikonin treatment induced increase of cleaved PARP, γH2AX, FOXO3, Bax, Bim, Bad, p21, p27, and active forms of caspase-3, caspase-7, caspase-9, caspase-6, and caspase-8 protein levels, while those of inactive forms were decreased. Also, the expressions of pAkt, Bcl-2, Bcl-xL, peroxiredoxin, and thioredoxin 1 were decreased. Furthermore, western blotting analysis of cytoplasmic and nuclear fractionated proteins showed that acetylshikonin treatment induced the nuclear translocation of FOXO3, which might result from DNA damage by the increased intracellular ROS level. This study represents apoptotic potential of acetylshikonin against colorectal cancer cells via translocation of FOXO3 to the nucleus and upregulation of ROS generation.


2019 ◽  
Vol 12 (2) ◽  
pp. 629-638
Author(s):  
N. N. Bahari ◽  
S. Y. N. Jamaludin ◽  
A. H. Jahidin ◽  
M. N. Zahary ◽  
A. B. Mohd Hilmi

The transient receptor potential vanilloid member 4 (TRPV4) is a non-selective calcium (Ca2+)-permeable channel which is widely expressed in different types of tissues including the lungs, liver, kidneys and salivary gland. TRPV4 has been shown to serve as a cellular sensor where it is involved in processes such as osmoregulation, cell volume regulation and thermoregulation. Emerging evidence suggests that TRPV4 also plays important roles in several aspects of cancer progression. Despite the reported roles of TRPV4 in several forms of cancers, the role of TRPV4 in human colorectal cancer remains largely unexplored. In the present study, we sought to establish the potential role of TRPV4 in colorectal cancer by assessing TRPV4 expression levels and investigating whether TRPV4 pharmacological modulation may alter cell proliferation, cell cycle and cell death in colorectal cancer cells. Quantitative real-time PCR analysis revealed that TRPV4 mRNA levels were significantly lower in HT-29 cells than normal colon CCD-18Co cells. However, TRPV4 mRNA was absent in HCT-116 cells. Pharmacological activation of TRPV4 with GSK1016790A significantly enhanced the proliferation of HT-29 cells while TRPV4 inhibition using RN 1734 decreased their proliferation. Increased proliferation in GSK1016790A-treated HT-29 cells was attenuated by co-treatment with RN 1734. Pharmacological modulation of TRPV4 had no effect on the cell cycle progression but promoted cell death in HT-29 cells. Taken together, these findings suggest differential TRPV4 expression levels in human colorectal cancer cells and that pharmacological modulation of TRPV4 produces distinct effects on the proliferation and induces cell death in HT-29 cells.


Sign in / Sign up

Export Citation Format

Share Document