scholarly journals Single Cell scale RNA-seq Analysis Protocol to analyze Smart-3SEQ data from RAGP neurons of pig heart

2021 ◽  
Author(s):  
Lakshmi Kuttippurathu ◽  
Alison Moss ◽  
Rajanikanth Vadigepalli

Abstract The present protocol describes transcriptome mapping, data normalization and analysis pipeline with detailed steps for each of these aspects for single cell/ low input RNASeq data from Right Atrial Ganglionated Plexus (RAGP) of pig heart. The protocol with minor modifications can be adapted for low input samples with short reads or samples with low quality input RNA. Single cell samples acquired using Laser Capture Microdissection (LCM) were processed for RNA-Seq library preparation using Smart-3SEQ technique (Foley et al 2019). The data analysis workflow consists of (a) pre-processing- data trimming, read alignment and feature count and (b) downstream analysis- annotation, batch correction, filtering and normalization. The entire protocol is performed using freely available packages. Most of them are available within the R framework.

2020 ◽  
Author(s):  
Snehalika Lall ◽  
Abhik Ghosh ◽  
Sumanta Ray ◽  
Sanghamitra Bandyopadhyay

ABSTRACTMany single-cell typing methods require pure clustering of cells, which is susceptible towards the technical noise, and heavily dependent on high quality informative genes selected in the preliminary steps of downstream analysis. Techniques for gene selection in single-cell RNA sequencing (scRNA-seq) data are seemingly simple which casts problems with respect to the resolution of (sub-)types detection, marker selection and ultimately impacts towards cell annotation. We introduce sc-REnF, a novel and robust entropy based feature (gene) selection method, which leverages the landmark advantage of ‘Renyi’ and ‘Tsallis’ entropy achieved in their original application, in single cell clustering. Thereby, gene selection is robust and less sensitive towards the technical noise present in the data, producing a pure clustering of cells, beyond classifying independent and unknown sample with utmost accuracy. The corresponding software is available at: https://github.com/Snehalikalall/sc-REnF


2021 ◽  
Vol 17 (10) ◽  
pp. e1009464
Author(s):  
Snehalika Lall ◽  
Sumanta Ray ◽  
Sanghamitra Bandyopadhyay

Gene selection in unannotated large single cell RNA sequencing (scRNA-seq) data is important and crucial step in the preliminary step of downstream analysis. The existing approaches are primarily based on high variation (highly variable genes) or significant high expression (highly expressed genes) failed to provide stable and predictive feature set due to technical noise present in the data. Here, we propose RgCop, a novel regularized copula based method for gene selection from large single cell RNA-seq data. RgCop utilizes copula correlation (Ccor), a robust equitable dependence measure that captures multivariate dependency among a set of genes in single cell expression data. We raise an objective function by adding a l1 regularization term with Ccor to penalizes the redundant co-efficient of features/genes, resulting non-redundant effective features/genes set. Results show a significant improvement in the clustering/classification performance of real life scRNA-seq data over the other state-of-the-art. RgCop performs extremely well in capturing dependence among the features of noisy data due to the scale invariant property of copula, thereby improving the stability of the method. Moreover, the differentially expressed (DE) genes identified from the clusters of scRNA-seq data are found to provide an accurate annotation of cells. Finally, the features/genes obtained from RgCop can able to annotate the unknown cells with high accuracy.


2019 ◽  
Author(s):  
Marcus Alvarez ◽  
Elior Rahmani ◽  
Brandon Jew ◽  
Kristina M. Garske ◽  
Zong Miao ◽  
...  

AbstractSingle-nucleus RNA sequencing (snRNA-seq) measures gene expression in individual nuclei instead of cells, allowing for unbiased cell type characterization in solid tissues. Contrary to single-cell RNA seq (scRNA-seq), we observe that snRNA-seq is commonly subject to contamination by high amounts of extranuclear background RNA, which can lead to identification of spurious cell types in downstream clustering analyses if overlooked. We present a novel approach to remove debris-contaminated droplets in snRNA-seq experiments, called Debris Identification using Expectation Maximization (DIEM). Our likelihood-based approach models the gene expression distribution of debris and cell types, which are estimated using EM. We evaluated DIEM using three snRNA-seq data sets: 1) human differentiating preadipocytes in vitro, 2) fresh mouse brain tissue, and 3) human frozen adipose tissue (AT) from six individuals. All three data sets showed various degrees of extranuclear RNA contamination. We observed that existing methods fail to account for contaminated droplets and led to spurious cell types. When compared to filtering using these state of the art methods, DIEM better removed droplets containing high levels of extranuclear RNA and led to higher quality clusters. Although DIEM was designed for snRNA-seq data, we also successfully applied DIEM to single-cell data. To conclude, our novel method DIEM removes debris-contaminated droplets from single-cell-based data fast and effectively, leading to cleaner downstream analysis. Our code is freely available for use at https://github.com/marcalva/diem.


2020 ◽  
Author(s):  
Ruben Chazarra-Gil ◽  
Stijn van Dongen ◽  
Vladimir Yu Kiselev ◽  
Martin Hemberg

AbstractAs the cost of single-cell RNA-seq experiments has decreased, an increasing number of datasets are now available. Combining newly generated and publicly accessible datasets is challenging due to non-biological signals, commonly known as batch effects. Although there are several computational methods available that can remove batch effects, evaluating which method performs best is not straightforward. Here we present BatchBench (https://github.com/cellgeni/batchbench), a modular and flexible pipeline for comparing batch correction methods for single-cell RNA-seq data. We apply BatchBench to eight methods, highlighting their methodological differences and assess their performance and computational requirements through a compendium of well-studied datasets. This systematic comparison guides users in the choice of batch correction tool, and the pipeline makes it easy to evaluate other datasets.


2018 ◽  
Vol 16 (1) ◽  
pp. 43-49 ◽  
Author(s):  
Maren Büttner ◽  
Zhichao Miao ◽  
F. Alexander Wolf ◽  
Sarah A. Teichmann ◽  
Fabian J. Theis
Keyword(s):  
Rna Seq ◽  

2019 ◽  
Vol 36 (6) ◽  
pp. 1779-1784 ◽  
Author(s):  
Chuanqi Wang ◽  
Jun Li

Abstract Motivation Scaling by sequencing depth is usually the first step of analysis of bulk or single-cell RNA-seq data, but estimating sequencing depth accurately can be difficult, especially for single-cell data, risking the validity of downstream analysis. It is thus of interest to eliminate the use of sequencing depth and analyze the original count data directly. Results We call an analysis method ‘scale-invariant’ (SI) if it gives the same result under different estimates of sequencing depth and hence can use the original count data without scaling. For the problem of classifying samples into pre-specified classes, such as normal versus cancerous, we develop a deep-neural-network based SI classifier named scale-invariant deep neural-network classifier (SINC). On nine bulk and single-cell datasets, the classification accuracy of SINC is better than or competitive to the best of eight other classifiers. SINC is easier to use and more reliable on data where proper sequencing depth is hard to determine. Availability and implementation This source code of SINC is available at https://www.nd.edu/∼jli9/SINC.zip. Supplementary information Supplementary data are available at Bioinformatics online.


2021 ◽  
Author(s):  
Hanbyeol Kim ◽  
Joongho Lee ◽  
Keunsoo Kang ◽  
Seokhyun Yoon

Abstract Cell type identification is a key step to downstream analysis of single cell RNA-seq experiments. Indispensible information for this is gene expression, which is used to cluster cells, train the model and set rejection thresholds. Problem is they are subject to batch effect arising from different platforms and preprocessing. We present MarkerCount, which uses the number of markers expressed regardless of their expression level to initially identify cell types and, then, reassign cell type in cluster-basis. MarkerCount works both in reference and marker-based mode, where the latter utilizes only the existing lists of markers, while the former required pre-annotated dataset to train the model. The performance was evaluated and compared with the existing identifiers, both marker and reference-based, that can be customized with publicly available datasets and marker DB. The results show that MarkerCount provides a stable performance when comparing with other reference-based and marker-based cell type identifiers.


2021 ◽  
Author(s):  
Fei Wu ◽  
Yaozhong Liu ◽  
Binhua Ling

RNA-seq data contains not only host transcriptomes but also non-host information that comprises transcripts from active microbiota in the host cells. Therefore, metatranscriptomics can reveal gene expression of the entire microbial community in a given sample. However, there is no single tool that can simultaneously analyze host-microbiota interactions and to quantify microbiome at the single-cell level, particularly for users with limited expertise of bioinformatics. Here, we developed a novel software program that can comprehensively and synergistically analyze gene expression of the host and microbiome as well as their association using bulk and single-cell RNA-seq data. Our pipeline, named Meta-Transcriptome Detector (MTD), can identify and quantify microbiome extensively, including viruses, bacteria, protozoa, fungi, plasmids, and vectors. MTD is easy to install and is user-friendly. This novel software program empowers researchers to study the interactions between microbiota and the host by analyzing gene expressions and pathways, which provides further insights into host responses to microorganisms.


Author(s):  
Fan Gao ◽  
Jae Mun Kim ◽  
JiHong Kim ◽  
Ming Yi Lin ◽  
Charles Y. Liu ◽  
...  
Keyword(s):  
Rna Seq ◽  

2020 ◽  
Author(s):  
Ming Wu ◽  
Tim Kacprowski ◽  
Dietmar Zehn

AbstractSummaryThe Advanced capacities of high throughput single cell technologies have facilitated a great understanding of complex biological systems, ranging from cell heterogeneity to molecular expression kinetics. Several pipelines have been introduced to standardize the scRNA-seq analysis workflow. These include cell population identification, cell marker detection and cell trajectory reconstruction. Yet, establishing a systematized pipeline to capture regulatory relationships among transcription factors (TFs) and genes at the cellular level still remains challenging. Here we present PySCNet, a python toolkit that enables reconstructing and analyzing gene regulatory networks (GRNs) from single cell transcriptomic data. PySCNet integrates competitive gene regulatory construction methodologies for cell specific or trajectory specific GRNs and allows for gene co-expression module detection and gene importance evaluation. Moreover, PySCNet offers a user-friendly dashboard website, where GRNs can be customized in an intuitive way.AvailabilitySource code and documentation are available: https://github.com/MingBit/[email protected]


Sign in / Sign up

Export Citation Format

Share Document