scholarly journals Flexible comparison of batch correction methods for single-cell RNA-seq using BatchBench

2020 ◽  
Author(s):  
Ruben Chazarra-Gil ◽  
Stijn van Dongen ◽  
Vladimir Yu Kiselev ◽  
Martin Hemberg

AbstractAs the cost of single-cell RNA-seq experiments has decreased, an increasing number of datasets are now available. Combining newly generated and publicly accessible datasets is challenging due to non-biological signals, commonly known as batch effects. Although there are several computational methods available that can remove batch effects, evaluating which method performs best is not straightforward. Here we present BatchBench (https://github.com/cellgeni/batchbench), a modular and flexible pipeline for comparing batch correction methods for single-cell RNA-seq data. We apply BatchBench to eight methods, highlighting their methodological differences and assess their performance and computational requirements through a compendium of well-studied datasets. This systematic comparison guides users in the choice of batch correction tool, and the pipeline makes it easy to evaluate other datasets.

2021 ◽  
Author(s):  
Ruben Chazarra-Gil ◽  
Stijn van Dongen ◽  
Vladimir Yu Kiselev ◽  
Martin Hemberg

Abstract As the cost of single-cell RNA-seq experiments has decreased, an increasing number of datasets are now available. Combining newly generated and publicly accessible datasets is challenging due to non-biological signals, commonly known as batch effects. Although there are several computational methods available that can remove batch effects, evaluating which method performs best is not straightforward. Here, we present BatchBench (https://github.com/cellgeni/batchbench), a modular and flexible pipeline for comparing batch correction methods for single-cell RNA-seq data. We apply BatchBench to eight methods, highlighting their methodological differences and assess their performance and computational requirements through a compendium of well-studied datasets. This systematic comparison guides users in the choice of batch correction tool, and the pipeline makes it easy to evaluate other datasets.


Author(s):  
Massimo Andreatta ◽  
Santiago J. Carmona

AbstractComputational tools for the integration of single-cell transcriptomics data are designed to correct batch effects between technical replicates or different technologies applied to the same population of cells. However, they have inherent limitations when applied to heterogeneous sets of data with moderate overlap in cell states or sub-types. STACAS is a package for the identification of integration anchors in the Seurat environment, optimized for the integration of datasets that share only a subset of cell types. We demonstrate that by i) correcting batch effects while preserving relevant biological variability across datasets, ii) filtering aberrant integration anchors with a quantitative distance measure, and iii) constructing optimal guide trees for integration, STACAS can accurately align scRNA-seq datasets composed of only partially overlapping cell populations. We anticipate that the algorithm will be a useful tool for the construction of comprehensive single-cell atlases by integration of the growing amount of single-cell data becoming available in public repositories.Code availabilityR package:https://github.com/carmonalab/STACASDocker image:https://hub.docker.com/repository/docker/mandrea1/stacas_demo


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Jiaqi Li ◽  
Chengxuan Yu ◽  
Lifeng Ma ◽  
Jingjing Wang ◽  
Guoji Guo

AbstractWith the development of single-cell RNA sequencing (scRNA-seq) technology, analysts need to integrate hundreds of thousands of cells with multiple experimental batches. It is becoming increasingly difficult for users to select the best integration methods to remove batch effects. Here, we compared the advantages and limitations of four commonly used Scanpy-based batch-correction methods using two representative and large-scale scRNA-seq datasets. We quantitatively evaluated batch-correction performance and efficiency. Furthermore, we discussed the performance differences among the evaluated methods at the algorithm level.


2018 ◽  
Author(s):  
Gregor Sturm ◽  
Francesca Finotello ◽  
Florent Petitprez ◽  
Jitao David Zhang ◽  
Jan Baumbach ◽  
...  

AbstractMotivationThe composition and density of immune cells in the tumor microenvironment profoundly influence tumor progression and success of anti-cancer therapies. Flow cytometry, immunohistochemistry staining, or single-cell sequencing is often unavailable such that we rely on computational methods to estimate the immune-cell composition from bulk RNA-sequencing (RNA-seq) data. Various methods have been proposed recently, yet their capabilities and limitations have not been evaluated systematically. A general guideline leading the research community through cell type deconvolution is missing.ResultsWe developed a systematic approach for benchmarking such computational methods and assessed the accuracy of tools at estimating nine different immune- and stromal cells from bulk RNA-seq samples. We used a single-cell RNA-seq dataset of ∼11,000 cells from the tumor microenvironment to simulate bulk samples of known cell type proportions, and validated the results using independent, publicly available gold-standard estimates. This allowed us to analyze and condense the results of more than a hundred thousand predictions to provide an exhaustive evaluation across seven computational methods over nine cell types and ∼1,800 samples from five simulated and real-world datasets. We demonstrate that computational deconvolution performs at high accuracy for well-defined cell-type signatures and propose how fuzzy cell-type signatures can be improved. We suggest that future efforts should be dedicated to refining cell population definitions and finding reliable signatures.AvailabilityA snakemake pipeline to reproduce the benchmark is available at https://github.com/grst/immune_deconvolution_benchmark. An R package allows the community to perform integrated deconvolution using different methods (https://grst.github.io/immunedeconv)[email protected] informationSupplementary data are available at Bioinformatics online.


2020 ◽  
Author(s):  
Viacheslav Mylka ◽  
Jeroen Aerts ◽  
Irina Matetovici ◽  
Suresh Poovathingal ◽  
Niels Vandamme ◽  
...  

ABSTRACTMultiplexing of samples in single-cell RNA-seq studies allows significant reduction of experimental costs, straightforward identification of doublets, increased cell throughput, and reduction of sample-specific batch effects. Recently published multiplexing techniques using oligo-conjugated antibodies or - lipids allow barcoding sample-specific cells, a process called ‘hashing’. Here, we compare the hashing performance of TotalSeq-A and -C antibodies, custom synthesized lipids and MULTI-seq lipid hashes in four cell lines, both for single-cell RNA-seq and single-nucleus RNA-seq. Hashing efficiency was evaluated using the intrinsic genetic variation of the cell lines. Benchmarking of different hashing strategies and computational pipelines indicates that correct demultiplexing can be achieved with both lipid- and antibody-hashed human cells and nuclei, with MULTISeqDemux as the preferred demultiplexing function and antibody-based hashing as the most efficient protocol on cells. Antibody hashing was further evaluated on clinical samples using PBMCs from healthy and SARS-CoV-2 infected patients, where we demonstrate a more affordable approach for large single-cell sequencing clinical studies, while simultaneously reducing batch effects.


2020 ◽  
Author(s):  
Mohit Goyal ◽  
Guillermo Serrano ◽  
Ilan Shomorony ◽  
Mikel Hernaez ◽  
Idoia Ochoa

AbstractSingle-cell RNA-seq is a powerful tool in the study of the cellular composition of different tissues and organisms. A key step in the analysis pipeline is the annotation of cell-types based on the expression of specific marker genes. Since manual annotation is labor-intensive and does not scale to large datasets, several methods for automated cell-type annotation have been proposed based on supervised learning. However, these methods generally require feature extraction and batch alignment prior to classification, and their performance may become unreliable in the presence of cell-types with very similar transcriptomic profiles, such as differentiating cells. We propose JIND, a framework for automated cell-type identification based on neural networks that directly learns a low-dimensional representation (latent code) in which cell-types can be reliably determined. To account for batch effects, JIND performs a novel asymmetric alignment in which the transcriptomic profile of unseen cells is mapped onto the previously learned latent space, hence avoiding the need of retraining the model whenever a new dataset becomes available. JIND also learns cell-type-specific confidence thresholds to identify and reject cells that cannot be reliably classified. We show on datasets with and without batch effects that JIND classifies cells more accurately than previously proposed methods while rejecting only a small proportion of cells. Moreover, JIND batch alignment is parallelizable, being more than five or six times faster than Seurat integration. Availability: https://github.com/mohit1997/JIND.


2018 ◽  
Vol 16 (1) ◽  
pp. 43-49 ◽  
Author(s):  
Maren Büttner ◽  
Zhichao Miao ◽  
F. Alexander Wolf ◽  
Sarah A. Teichmann ◽  
Fabian J. Theis
Keyword(s):  
Rna Seq ◽  

Author(s):  
Massimo Andreatta ◽  
Santiago J Carmona

Abstract Summary STACAS is a computational method for the identification of integration anchors in the Seurat environment, optimized for the integration of single-cell (sc) RNA-seq datasets that share only a subset of cell types. We demonstrate that by (i) correcting batch effects while preserving relevant biological variability across datasets, (ii) filtering aberrant integration anchors with a quantitative distance measure and (iii) constructing optimal guide trees for integration, STACAS can accurately align scRNA-seq datasets composed of only partially overlapping cell populations. Availability and implementation Source code and R package available at https://github.com/carmonalab/STACAS; Docker image available at https://hub.docker.com/repository/docker/mandrea1/stacas_demo.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bin Zou ◽  
Tongda Zhang ◽  
Ruilong Zhou ◽  
Xiaosen Jiang ◽  
Huanming Yang ◽  
...  

It is well recognized that batch effect in single-cell RNA sequencing (scRNA-seq) data remains a big challenge when integrating different datasets. Here, we proposed deepMNN, a novel deep learning-based method to correct batch effect in scRNA-seq data. We first searched mutual nearest neighbor (MNN) pairs across different batches in a principal component analysis (PCA) subspace. Subsequently, a batch correction network was constructed by stacking two residual blocks and further applied for the removal of batch effects. The loss function of deepMNN was defined as the sum of a batch loss and a weighted regularization loss. The batch loss was used to compute the distance between cells in MNN pairs in the PCA subspace, while the regularization loss was to make the output of the network similar to the input. The experiment results showed that deepMNN can successfully remove batch effects across datasets with identical cell types, datasets with non-identical cell types, datasets with multiple batches, and large-scale datasets as well. We compared the performance of deepMNN with state-of-the-art batch correction methods, including the widely used methods of Harmony, Scanorama, and Seurat V4 as well as the recently developed deep learning-based methods of MMD-ResNet and scGen. The results demonstrated that deepMNN achieved a better or comparable performance in terms of both qualitative analysis using uniform manifold approximation and projection (UMAP) plots and quantitative metrics such as batch and cell entropies, ARI F1 score, and ASW F1 score under various scenarios. Additionally, deepMNN allowed for integrating scRNA-seq datasets with multiple batches in one step. Furthermore, deepMNN ran much faster than the other methods for large-scale datasets. These characteristics of deepMNN made it have the potential to be a new choice for large-scale single-cell gene expression data analysis.


2020 ◽  
Author(s):  
Wanqiu Chen ◽  
Yongmei Zhao ◽  
Xin Chen ◽  
Xiaojiang Xu ◽  
Zhaowei Yang ◽  
...  

AbstractSingle-cell RNA sequencing (scRNA-seq) has become a very powerful technology for biomedical research and is becoming much more affordable as methods continue to evolve, but it is unknown how reproducible different platforms are using different bioinformatics pipelines, particularly the recently developed scRNA-seq batch correction algorithms. We carried out a comprehensive multi-center cross-platform comparison on different scRNA-seq platforms using standard reference samples. We compared six pre-processing pipelines, seven bioinformatics normalization procedures, and seven batch effect correction methods including CCA, MNN, Scanorama, BBKNN, Harmony, limma and ComBat to evaluate the performance and reproducibility of 20 scRNA-seq data sets derived from four different platforms and centers. We benchmarked scRNA-seq performance across different platforms and testing sites using global gene expression profiles as well as some cell-type specific marker genes. We showed that there were large batch effects; and the reproducibility of scRNA-seq across platforms was dictated both by the expression level of genes selected and the batch correction methods used. We found that CCA, MNN, and BBKNN all corrected the batch variations fairly well for the scRNA-seq data derived from biologically similar samples across platforms/sites. However, for the scRNA-seq data derived from or consisting of biologically distinct samples, limma and ComBat failed to correct batch effects, whereas CCA over-corrected the batch effect and misclassified the cell types and samples. In contrast, MNN, Harmony and BBKNN separated biologically different samples/cell types into correspondingly distinct dimensional subspaces; however, consistent with this algorithm’s logic, MNN required that the samples evaluated each contain a shared portion of highly similar cells. In summary, we found a great cross-platform consistency in separating two distinct samples when an appropriate batch correction method was used. We hope this large cross-platform/site scRNA-seq data set will provide a valuable resource, and that our findings will offer useful advice for the single-cell sequencing community.


Sign in / Sign up

Export Citation Format

Share Document