scholarly journals Tandem electrocatalytic N2 fixation via concerted proton-electron transfer

Author(s):  
Jonas Peters ◽  
Pablo Garrido-Barros ◽  
Joseph Derosa ◽  
Matthew Chalkley

Abstract New electrochemical ammonia (NH3) synthesis technologies are of interest as a complementary route to the Haber-Bosch (HB) process for distributed fertilizer generation, and towards exploiting ammonia as a zero-carbon fuel produced via renewably-sourced electricity.1–4 Apropos of these goals is a surge of fundamental research targeting heterogeneous materials5–7 as electrocatalysts for the nitrogen reduction reaction (N2RR). These systems generally suffer from poor stability and NH3 selectivity; competitive hydrogen evolution reaction (HER) outcompetes N2RR.8 Molecular catalyst systems can be exquisitely tuned and offer an alternative strategy,9 but progress has thus far been thwarted by the same selectivity issue; HER dominates. Herein we describe a tandem catalysis strategy that offers a solution to this puzzle. A molecular complex that can mediate an N2 reduction cycle is partnered with a co-catalyst that interfaces the electrode and an acid to mediate concerted proton-electron transfer (CPET) steps, facilitating N−H bond formation at a favorable applied potential and overall thermodynamic efficiency. Without CPET, certain intermediates of the N2RR cycle would be unreactive via independent electron transfer (ET) or proton transfer (PT) steps, thereby shunting the system. Promisingly, complexes featuring several metals (W, Mo, Os, Fe) achieve N2RR electrocatalysis at the same applied potential in the presence of the CPET mediator, pointing to the generality of this tandem approach.

2021 ◽  
Author(s):  
Pablo Garrido-Barros ◽  
Joseph Derosa ◽  
Matthew Chalkley ◽  
Jonas Peters

New electrochemical ammonia (NH3) synthesis technologies are of interest as a complementary route to the Haber-Bosch (HB) process for distributed fertilizer generation, and towards exploiting ammonia as a zero-carbon fuel produced via renewably-sourced electricity. Apropos of these goals is a surge of fundamental research targeting heterogeneous materials as electrocatalysts for the nitrogen reduction reaction (N2RR). These systems generally suffer from poor stability and NH3 selectivity; competitive hydrogen evolution reaction (HER) outcompetes N2RR. Molecular catalyst systems can be exquisitely tuned and offer an alternative strategy, but progress has thus far been thwarted by the same selectivity issue; HER dominates. Herein we describe a tandem catalysis strategy that offers a solution to this puzzle. A molecular complex that can mediate an N2 reduction cycle is partnered with a co-catalyst that interfaces the electrode and an acid to mediate concerted proton-electron transfer (CPET) steps, facilitating N−H bond formation at a favorable applied potential and overall thermodynamic efficiency. Without CPET, certain intermediates of the N2RR cycle would be unreactive via independent electron transfer (ET) or proton transfer (PT) steps, thereby shunting the system. Promisingly, complexes featuring several metals (W, Mo, Os, Fe) achieve N2RR electrocatalysis at the same applied potential in the presence of the CPET mediator, pointing to the generality of this tandem approach.


Nano Research ◽  
2021 ◽  
Author(s):  
Yating Zhu ◽  
Xiaoya Cui ◽  
Huiling Liu ◽  
Zhenguo Guo ◽  
Yanfeng Dang ◽  
...  

2020 ◽  
Vol 44 (38) ◽  
pp. 16584-16593
Author(s):  
Jiayi Feng ◽  
Yonggang Zhang

Degradation mechanism of ORR for the NGO-Ti mesh cathode material in the EF process.


1975 ◽  
Vol 30 (5-6) ◽  
pp. 327-332 ◽  
Author(s):  
Gerhard Vierke ◽  
Manfred Müller

Abstract Spectrophotometric investigation of the kinetics of the spontaneous reduction of the central metal ion in K2[Mn (IV)-2-α-hydroxyethyl-isochlorine e4] acetate in aqueous alkaline solution in the absence of any reducing agent reveals that it is a pseudo-first order reaction which is specifically hydroxide ion catalyzed. The pKα-value of the acid-base equilibrium has been estimated to be 14.4. Electron transfer to the central metal ion is the rate limiting step. The measurements of its temperature dependence yields an activation enthalpy of ∆H‡ = 12 kcal/mol and an entropy of activation ∆S‡ = - 30 e.u. thus indicating that the electron transfer step is a bimolecular reaction. The most likely reactant is water. The reduction reaction does not take place with appreciable reaction rates at physiological pH. Thus, when bound to a suitable ligand of the chlorin type, Mn (IV)-compounds are sufficiently stable with respect to autoxidation to play some role in biological redox reactions as postulated recently for the photoreactivation process of the water splitting system in photosynthesis.


2019 ◽  
Vol 9 (23) ◽  
pp. 6606-6612 ◽  
Author(s):  
Yaqi Cao ◽  
Yuanzhi Zhu ◽  
Xifan Chen ◽  
Bahreselam Sielu Abraha ◽  
Wenchao Peng ◽  
...  

The hierarchical structure enhances oxygen diffusion, improves electron transfer, and exposes more catalytic active sites for the ORR.


Sign in / Sign up

Export Citation Format

Share Document