scholarly journals Hadean/Eoarchean Tectonics and Mantle Mixing Induced by Impacts: a Three-dimensional Study

Author(s):  
Xavier Borgeat ◽  
Paul Tackley

Abstract The timing of the onset of plate tectonics on Earth remains a topic of strong debate, as does the tectonic mode that preceded modern plate tectonics. Understanding possible tectonic modes and transitions between them is also important for other terrestrial planets such as Venus and rocky exoplanets. Recent two-dimensional modelling studies have demonstrated that impacts can initiate subduction during the early stages of terrestrial planet evolution - the Hadean and Eoarchean in Earth's case. Here, we perform three-dimensional simulations of the influence of ongoing multiple impacts on early Earth tectonics and its effect on the distribution of compositional heterogeneity in the mantle, including the distribution of impactor material. We compare two-dimensional and three-dimensional simulations to determine when geometry is important. Results show that impacts can induce subduction in both 2-D and 3-D and thus have a great influence on the tectonic regime. The effect is particularly strong in cases that otherwise display stagnant-lid tectonics: impacts can shift them to having a plate-like regime. In such cases, however, plate-like behaviour is temporary: as the impactor flux decreases the system returns to what it was without impacts. Impacts result in both greater production of oceanic crust and greater recycling of it, increasing the build-up of subducted crust above the core-mantle boundary and in the transition zone. Impactor material is mainly located in the upper mantle, at least at the end of the modelled 500 million year period. In 2-D simulations, in contrast to 3-D simulations, impacts are less frequent but each has a larger effect on surface mobility, making the simulations more stochastic. These stronger 2-D subduction events can mix both recycled basalt and impactor material into the lower mantle. These results thus demonstrate that impacts can make a first-order difference to the early tectonics and mantle mixing of Earth and other large terrestrial planets, and that three-dimensional simulations are important so that effects are not over- or under-predicted.

Author(s):  
Francine Battaglia ◽  
George Papadopoulos

The effect of three-dimensionality on low Reynolds number flows past a symmetric sudden expansion in a channel was investigated. The geometric expansion ratio of in the current study was 2:1 and the aspect ratio was 6:1. Both experimental velocity measurements and two- and three-dimensional simulations for the flow along the centerplane of the rectangular duct are presented for Reynolds numbers in the range of 150 to 600. Comparison of the two-dimensional simulations with the experiments revealed that the simulations fail to capture completely the total expansion effect on the flow, which couples both geometric and hydrodynamic effects. To properly do so requires the definition of an effective expansion ratio, which is the ratio of the downstream and upstream hydraulic diameters and is therefore a function of both the expansion and aspect ratios. When the two-dimensional geometry was consistent with the effective expansion ratio, the new results agreed well with the three-dimensional simulations and the experiments. Furthermore, in the range of Reynolds numbers investigated, the laminar flow through the expansion underwent a symmetry-breaking bifurcation. The critical Reynolds number evaluated from the experiments and the simulations was compared to other values reported in the literature. Overall, side-wall proximity was found to enhance flow stability, helping to sustain laminar flow symmetry to higher Reynolds numbers in comparison to nominally two-dimensional double-expansion geometries. Lastly, and most importantly, when the logarithm of the critical Reynolds number from all these studies was plotted against the reciprocal of the effective expansion ratio, a linear trend emerged that uniquely captured the bifurcation dynamics of all symmetric double-sided planar expansions.


Buildings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 235
Author(s):  
Joanna Jablonska ◽  
Roman Czajka

Contemporary architectural and urban planning aims at optimal development of the environment, including in terms of acoustics. As such, support with computer-aided design (CAD) tools is, nowadays, obligatory. The authors present investigation outcomes of three different CAD and computing methods extracted for the study. The scope covers different scales of considerations from architectural acoustics to the urban level, which relates to the standard architect’s commissions field. The described approaches are applicable for both academics and professionals in the broadly understood building industry There were analysed and synthesized experiences from the use of two-dimensional and three-dimensional simulations, computing based on standardized formulas, and an acoustic meter (here: the SVAN 979 for RT60, LAeq measurement). The article concludes with an assessment, which shows possible uses of methods and confirmations of their usability.


Author(s):  
Bruno S. Carmo ◽  
Rafael S. Gioria ◽  
Ivan Korkischko ◽  
Cesar M. Freire ◽  
Julio R. Meneghini

Two- and three-dimensional simulations of the flow around straked cylinders are presented. For the two-dimensional simulations we used the Spectral/hp Element Method, and carried out simulations for five different angles of rotation of the cylinder with respect to the free stream. Fixed and elastically-mounted cylinders were tested, and the Reynolds number was kept constant and equal to 150. The results were compared to those obtained from the simulation of the flow around a bare cylinder under the same conditions. We observed that the two-dimensional strakes are not effective in suppressing the vibration of the cylinders, but also noticed that the responses were completely different even with a slight change in the angle of rotation of the body. The three-dimensional results showed that there are two mechanisms of suppression: the main one is the decrease in the vortex shedding correlation along the span, whilst a secondary one is the vortex wake formation farther downstream.


2019 ◽  
Vol 75 (4) ◽  
pp. 443-450
Author(s):  
Guiying Zhu ◽  
Yang Lu ◽  
Guoxia Jin ◽  
Xuan Ji ◽  
Jianping Ma

Three new one- (1D) and two-dimensional (2D) CuII coordination polymers, namely poly[[bis{μ2-4-amino-3-(pyridin-2-yl)-5-[(pyridin-3-ylmethyl)sulfanyl]-1,2,4-triazole}copper(II)] bis(methanesulfonate) tetrahydrate], {[Cu(C13H12N5S)2](CH3SO3)2·4H2O} n (1), catena-poly[[copper(II)-bis{μ2-4-amino-3-(pyridin-2-yl)-5-[(pyridin-4-ylmethyl)sulfanyl]-1,2,4-triazole}] dinitrate methanol disolvate], {[Cu(C13H12N5S)2](NO3)2·2CH3OH} n (2), and catena-poly[[copper(II)-bis{μ2-4-amino-3-(pyridin-2-yl)-5-[(pyridin-4-ylmethyl)sulfanyl]-1,2,4-triazole}] bis(perchlorate) monohydrate], {[Cu(C13H12N5S)2](ClO4)2·H2O} n (3), were obtained from 4-amino-3-(pyridin-2-yl)-5-[(pyridin-3-ylmethyl)sulfanyl]-1,2,4-triazole with pyridin-3-yl terminal groups and from 4-amino-3-(pyridin-2-yl)-5-[(pyridin-4-ylmethyl)sulfanyl]-1,2,4-triazole with pyridin-4-yl terminal groups. Compound 1 displays a 2D net-like structure. The 2D layers are further linked through hydrogen bonds between methanesulfonate anions and amino groups on the framework and guest H2O molecules in the lattice to form a three-dimensional (3D) structure. Compound 2 and 3 exhibit 1D chain structures, in which the complicated hydrogen-bonding interactions play an important role in the formation of the 3D network. These experimental results indicate that the coordination orientation of the heteroatoms on the ligands has a great influence on the polymeric structures. Moreover, the selection of different counter-anions, together with the inclusion of different guest solvent molecules, would also have a great effect on the hydrogen-bonding systems in the crystal structures.


2012 ◽  
Vol 19 (4) ◽  
pp. 555-571 ◽  
Author(s):  
Mark Riley ◽  
Malcolm Smith ◽  
J.E. van Aanhold ◽  
Niklas Alin

The study describes recent simulation results for underwater explosions in close-proximity to rigid targets. Simulations are performed using Chinook, an Eulerian computational fluid dynamics (CFD) code. Predicted target loadings are compared with measurements taken from a series of experiments conducted under an international collaboration between Canada, The Netherlands, and Sweden. The simulations of the rigid target tests focused on the modelling of gas bubble collapse and water jetting behaviour. Both two-dimensional and three-dimensional simulations were performed. It was found that the two-dimensional analyses produced good bubble periods and reasonable impulse loading compared to experimental data. The time of arrival of the bubble collapse and water jetting were found to be very mesh dependent and refining the mesh did not always produce better results. The two-dimensional approach provides a good initial understanding of the problem for a reasonable computational effort. The three-dimensional simulations were found to produce improved impulse predictions. The numerical gas bubble radii time histories are also compared to empirical time histories.


2007 ◽  
Vol 586 ◽  
pp. 259-293 ◽  
Author(s):  
F. X. TRIAS ◽  
M. SORIA ◽  
A. OLIVA ◽  
C. D. PÉREZ-SEGARRA

A set of complete two- and three-dimensional direct numerical simulations (DNS) in a differentially heated air-filled cavity of aspect ratio 4 with adiabatic horizontal walls is presented in this paper. Although the physical phenomenon is three-dimensional, owing to its prohibitive computational costs the majority of the previous DNS of turbulent and transition natural convection flows in enclosed cavities assumed a two-dimensional behaviour. The configurations selected here (Rayleigh number based on the cavity height 6.4 × 108, 2 × 109 and 1010, Pr = 0.71) are an extension to three dimensions of previous two-dimensional problems.An overview of the numerical algorithm and the methodology used to verify the code and the simulations is presented. The main features of the flow, including the time-averaged flow structure, the power spectra and probability density distributions of a set of selected monitoring points, the turbulent statistics, the global kinetic energy balances and the internal waves motion phenomenon are described and discussed.As expected, significant differences are observed between two- and three-dimensional results. For two-dimensional simulations the oscillations at the downstream part of the vertical boundary layer are clearly stronger, ejecting large eddies to the cavity core. In the three-dimensional simulations these large eddies do not persist and their energy is rapidly passed down to smaller scales of motion. It yields on a reduction of the large-scale mixing effect at the hot upper and cold lower regions and consequently the cavity core still remains almost motionless even for the highest Rayleigh number. The boundary layers remain laminar in their upstream parts up to the point where these eddies are ejected. The point where this phenomenon occurs clearly moves upstream for the three-dimensional simulations. It is also shown that, even for the three-dimensional simulations, these eddies are large enough to permanently excite an internal wave motion in the stratified core region. All these differences become more marked for the highest Rayleigh number.


2010 ◽  
Vol 648 ◽  
pp. 225-256 ◽  
Author(s):  
B. E. STEWART ◽  
M. C. THOMPSON ◽  
T. LEWEKE ◽  
K. HOURIGAN

A study investigating the flow around a cylinder rolling or sliding on a wall has been undertaken in two and three dimensions. The cylinder motion is specified from a set of five discrete rotation rates, ranging from prograde through to retrograde rolling. A Reynolds number range of 20–500 is considered. The effects of the nearby wall and the imposed body motion on the wake structure and dominant wake transitions have been determined. Prograde rolling is shown to destabilize the wake flow, while retrograde rotation delays the onset of unsteady flow to Reynolds numbers well above those observed for a cylinder in an unbounded flow.Two-dimensional simulations show the presence of two recirculation zones in the steady wake, the lengths of which increase approximately linearly with the Reynolds number. Values of the lift and drag coefficient are also reported for the steady flow regime. Results from a linear stability analysis show that the wake initially undergoes a regular bifurcation from a steady two-dimensional flow to a steady three-dimensional wake for all rotation rates. The critical Reynolds number Rec of transition and the spanwise wavelength of the dominant mode are shown to be highly dependent on, but smoothly varying with, the rotation rate of the cylinder. Varying the rotation from prograde to retrograde rolling acts to increase the value of Rec and decrease the preferred wavelength. The structure of the fully evolved wake mode is then established through three-dimensional simulations. In fact it is found that at Reynolds numbers only marginally (~5%) above critical, the three-dimensional simulations indicate that the saturated state becomes time dependent, although at least initially, this does not result in a significant change to the mode structure. It is only at higher Reynolds numbers that the wake undergoes a transition to vortex shedding.An analysis of the three-dimensional transition indicates that it is unlikely to be due to a centrifugal instability despite the superficial similarity to the flow over a backward-facing step, for which the transition mechanism has been speculated to be centrifugal. However, the attached elongated recirculation region and distribution of the spanwise perturbation vorticity field, and the similarity of these features with those of the flow through a partially blocked channel, suggest the possibility that the mechanism is elliptic in nature. Some analysis which supports this conjecture is undertaken.


Author(s):  
Mirka Deza ◽  
Francine Battaglia ◽  
Theodore J. Heindel

Fluidized beds are used to gasify materials such as coal or biomass in the production of producer gas. Modeling these reactors using computational fluid dynamics is advantageous when performing parametric studies for design and scale-up. While two-dimensional simulations are easier to perform than three-dimensional simulations, they may not capture the proper physics. This paper compares two- and three-dimensional simulations with experiments for a reactor geometry with side port air injection. The side port is located within the bed region so that the injected air can help promote mixing. Of interest in this study is validating the hydrodynamics of fluidizing biomass. Two operating conditions of the fluidized bed are studied for superficial gas velocities of 1.5Umf and 3.0Umf, where Umf is the minimum fluidization velocity. The material used to represent biomass is ground walnut shell because it tends to fluidize uniformly and falls within the Geldart type B classification. The simulations are compared to experimental data of time-averaged local gas holdup values using X-ray computed tomography. Results indicate that for the conditions of this study, two-dimensional simulations overpredict the gas holdup trends when compared to the experiments. However, the three-dimensional simulations compare exceptionally well with the experiments, thus predicting the fluidization hydrodynamics, irrespective of flowrate or complexity due to the side air port. Furthermore, the study demonstrates the importance of using a three-dimensional model for bubbling fluidized beds with complex physics.


2020 ◽  
Vol 172 ◽  
pp. 08004
Author(s):  
Ulrich Ruisinger ◽  
Peter Kautsch

This article examines whether transient two-dimensional simulations are sufficient or three-dimensional simulations are necessary for the hygrothermal analysis of the three-dimensional detail of a beam support. Detailed measurement series from a test house with various interior insulation systems available for the investigation allow the results of two- and three-dimensional simulations to be verified with the measured data. In both the cases, a very good agreement between measurement and simulations was found. With the thermal simulations, agreement with the measured data is similar in both two- and three-dimensional calculations. However, the hygric measurements agreed slightly better with the three-dimensional calculations. For planning real tasks, two-dimensional simulations should be sufficient, provided that the simulation settings are selected within the secure margins. The actual comparison is initiated by the validation of the software DELPHIN 6 by means of a three-dimensional, stationary test case from EN 10211.


Sign in / Sign up

Export Citation Format

Share Document