scholarly journals Sonic Hedgehog Improved Endothelial Cell Dysfunction and Attenuated The Development of Atherosclerosis In Mice

Author(s):  
Huizhen Yu ◽  
Huashan Huang ◽  
Yan Xue ◽  
Lichao Lin ◽  
Wenfei Zeng ◽  
...  

Abstract Sonic hedgehog (Shh), an evolutionally-highly conserved morphological factor whose maturation, transportation and function were closely related to cholesterol. Shh played an important role in maintaining adult coronary vasculature homeostasis. It not only induced angiogenesis to improve myocardial infarction but also inhibited ox-LDL induced endothelial apoptosis. However, the role of Shh in endothelial cell injury have not been fully elucidated. Here, we shown Shh induced nitric oxide (NO) release and endothelial nitric oxide synthase (eNOS) synthesis, which improved endothelial cell dysfunction and inhibited atherosclerotic plaque. In vivo, Shh reduced the plaque lesion in high fat diet (HFD) induced ApoE-/- mice. In endothelial cell, Shh improved NO and eNOS mRNA expression and inhibited intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) mRNA expression. In contrast, knockdown of Shh inhibited eNOS and NO level and induced ICAM-1 and VCAM-1. In conclusion, we found that Shh has anti-inflammation and improved endothelial cell injury consequently attenuated the development of atherosclerosis.

2007 ◽  
Vol 99 (4) ◽  
pp. 723-731 ◽  
Author(s):  
Kevin A. Harvey ◽  
Tyler Arnold ◽  
Tamkeen Rasool ◽  
Caryl Antalis ◽  
Steven J. Miller ◽  
...  

Epidemiological data indicate that there is a strong association between intake of trans-18 : 2 fatty acids (TFA) and sudden cardiac death. There is little known about the mechanisms by which TFA exert harmful effects on the cardiovascular system. The present in vitro study is the first to demonstrate the effects of membrane-incorporated C18 : 2 TFA on human aortic endothelial cell (HAEC) function. Trans-18 : 2 fatty acids were incorporated to a greater extent (2-fold) in the phospholipid fraction of endothelial cells than that of cis-18 : 2; furthermore, these fatty acids were enriched to a similar extent in the TAG fraction. Flow cytometric analysis indicated that TFA treatment of HAEC significantly increased the expression of endothelial adhesion molecules, including intercellular adhesion molecule-1 (CD54) and vitronectin receptor (CD51/CD61). Incorporation of TFA into membranes increased HAEC adhesion to fibronectin- or vitronectin-coated plates by 1·5- to 2-fold, respectively. Neutrophil and monocyte adhesion to HAEC monolayers was nearly proportional to adhesion molecule expression. TFA treatment also induced the release of monocyte chemoattractant protein-1 by nearly 3-fold in non-stimulated HAEC. Furthermore, we examined the role of TFA on in vitro angiogenic assays. Chemotactic migration of TFA-treated HAEC toward sphingosine-1-phosphate (SPP) was significantly increased compared with controls. Conversely, capillary morphogenesis of TFA-treated HAEC was significantly inhibited in response to SPP, suggesting that TFA incorporation suppresses endothelial cell differentiation. In conclusion, these in vitro studies demonstrated that TFA play a role in the induction of pro-inflammatory responses and endothelial cell dysfunction.


PLoS ONE ◽  
2015 ◽  
Vol 10 (4) ◽  
pp. e0117530 ◽  
Author(s):  
Massimiliano Migliori ◽  
Vincenzo Cantaluppi ◽  
Claudio Mannari ◽  
Alberto A. E. Bertelli ◽  
Davide Medica ◽  
...  

1996 ◽  
Vol 45 (3) ◽  
pp. 207-212 ◽  
Author(s):  
Sei-itsu Murota ◽  
Hiroshi Fujita ◽  
Yoshiyuki Wakabayashi ◽  
Ikuo Morita

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 897-897
Author(s):  
David R Myers ◽  
Yumiko Sakurai ◽  
Prasanthi Chappa ◽  
Gilda Barabino ◽  
David R. Archer ◽  
...  

Abstract Abstract 897 Sickle cell disease is a complex process involving biophysical and biological phenomenon such as microvascular occlusion due to rigid sickle erythrocytes, hemolysis, and aberrant cellular interactions involving endothelial cells and sickle erythrocytes and leukocytes. Indeed, a key aspect of sickle cell pathophysiology is endothelial cell dysfunction. Cardiovascular research in recent years has shown that endothelial cells biologically respond to the local mechanical environment, particularly to the changes in the applied shear stresses (Chiu and Chien, Physiological Reviews, 2011). Interestingly, no studies investigating how the biophysical alterations in sickle cell disease may directly affect endothelial function have been published. The classic view has been that vaso-occlusion is simply due to sickled erythrocytes becoming stuck in microvasculature at low oxygen tensions leading to decreased blood flow and tissue ischemia. However, the mechanical aspects of sickle cell vaso-occlusion themselves, that is, the physical phenomenon of sickling erythrocytes tightly packed in an occluded blood vessel, may directly affect endothelial biology and lead to dysfunction. We hypothesize that these pathologic forces induced by sickling erythrocytes directly lead to dysfunction of endothelial cells, which are mechanosensitive, and contribute to sickle cell pathophysiology. However, these sickling-induced forces and their effects on endothelial cells have been difficult to measure, in part due to a lack of available tools. To that end, we have developed two microfluidic tools to assess the role of sickle-cell vaso-occlusion on endothelial cells. The first device is an in vitro microfluidic platform featuring microchannels the size of post-capillary venules (30 μm) with human endothelial cells cultured within and completely lining the entire inner surface of those microchannels (Figure 1A). This “microvasculature-on-a-chip” enables the visualization of blood cell-endothelial cell interactions during vaso-occlusion under a controlled hemodynamic environment and provides a platform to study the effect of vaso-occlusion on endothelial cells. To date we have characterized this “endothelialized” microfluidic device, showing that endothelial cells are confluent using anti-VE-cadherin immunostaining and adequately generate nitric oxide. Furthermore, we have flowed blood samples from patients with sickle cell disease and found that hydroxyurea treatment both reduces the number of occlusions and increases the mean velocity of the blood traveling through the device, as expected (Figure 1B–E). To decouple whether it is a biochemical or biophysical phenomenon that causes endothelial cell dysfunction during vaso-occlusion, a second micromechanical device was created to quantitatively measure the forces generated by sickling events. The device captures whole blood and will deform outward when forces are applied by the sickle erythrocytes as shown in Figure 2. The membrane above the sickle cells has been coated with 2 μm fluorescent beads which will change focus during deflection. Deflections of one or two beads indicates that a single sickle cell is locally applying force, whereas deflections of large numbers of beads indicates that the cells are collectively applying a pressure to the membrane. The device has been fully fabricated and loaded with blood cells. An accompanying experimental setup enabling the deoxygenation of the device coupled with microscopy has also been created and preliminary tests show successful deoxygenation of sickle erythrocytes from patients with hemoglobin SS disease and the Berkeley sickle cell mouse model. By combining insights gained from each device, future work will determine how the mechanical process of sickling and vaso-occlusion directly affect endothelial function and will lead to a new understanding of sickle cell pathophysiology. Sickle cell vaso-occlusion will be induced in the “endothelialized” microfluidic device while monitoring nitric oxide production and the upregulation of inflammatory markers, such as adhesion molecules and free radicals. The second device will provide quantitative numbers of forces produced by sickling erythrocytes, leading to experiments in which these forces are applied to endothelial cells while monitoring the same metrics. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 818-818 ◽  
Author(s):  
Robert Mannino ◽  
David R Myers ◽  
Yumiko Sakurai ◽  
Russell E. Ware ◽  
Gilda Barabino ◽  
...  

Abstract Abstract 818 Endothelial dysfunction is a major component of sickle cell disease (SCD) pathophysiology. Interestingly, previous cardiovascular research has definitively shown that endothelial cells biologically respond to mechanical forces and aberrations in these forces cause endothelial dysfunction via pro-inflammatory pathways that are also involved in SCD. While endothelial dysfunction in SCD has been well characterized biologically, little research has focused on the direct biophysical effects of SCD blood on endothelium. As endothelial cells are in constant contact with flowing “stiffened” sickle erythrocytes, we propose that the direct mechanical interactions between the physically altered sickle erythrocytes and endothelial cells are an additional cause of endothelial dysfunction in SCD (Figure 1A). Endothelial dysfunction in SCD is thought to be caused by the downstream effects of vaso-occlusion and/or hemolysis. Our laboratory has recently developed and published a description of an in vitro microvasculature model comprised of endothelial cells that are cultured throughout the entire 3D inner surface of a microfluidic system designed for investigating cellular interactions in hematologic diseases (Tsai, et al, JCI, 2012), (Figure 1B-D). This microvasculature-on-a-chip recapitulates an ensemble of physiological processes and biophysical properties, including adhesion molecule expression, blood cell-endothelial cell interactions, cell deformability, cell size/shape, microvascular geometry, hemodynamics, and oxygen levels (Myers et al. JoVE, 2012), all of which may contribute to endothelial dysfunction in SCD. We hypothesize that the mechanical interactions between sickle erythrocytes and endothelial cells alone are sufficientto cause endothelial dysfunction in our microvasculature-on-a-chip. To test our hypothesis, we flowed different suspensions of healthy red blood cells (RBCs), and stiffened RBCs, through our microvasculature on a chip cultured with HUVECs. We suspended fresh human RBCs in media at a low hematocrit recapitulating the anemic conditions typically seen in SCD patients as a control. The experimental conditions used the same solution as the control, but also contained glutaraldehyde-stiffened RBCs, which are of the same stiffness as irreversibly sickled cells (ISCs), at approximately the same concentrations as ISCs in SCD patients. The stiffened RBC suspension was washed multiple times to eliminate all traces of glutaraldehyde and to ensure that any endothelial cell dysfunction in our system was due to mechanical effects between the endothelium and RBCs. After 4 hours of perfusion, the number of occlusions in our microsystem was counted and the cells were fixed and stained for Vascular Cell Adhesion Molecule 1 (VCAM-1). VCAM-1 been shown to be a marker of endothelial cell dysfunction and is a biomarker for severe vasculopathy in SCD (Dworkis, Am J Hematol, 2011). Immunofluorescence staining in our microsystem confirmed that VCAM1 is upregulated (Figure 2) in HUVECs when exposed to flowing stiffened RBCs compared to control RBCs. VCAM-1 upregulation appears to be diffuse throughout the length of the device. After experimentation, endothelial cells in our system can be isolated for further RT-PCR or microarray analysis. As such, ongoing work involves investigating and quantifying the expression of other pro-inflammatory molecules to elucidate the underlying mechanisms of this biomechanical process involving RBCs and endothelial cells. Additional experiments complementary experiments using endothelial cells from other anatomic areas, SCD patient samples, and murine SCD models are also underway. Our data indicates that purely physical interactions between endothelial cells and stiffened RBCs are sufficient to cause some degree of endothelial dysfunction, even in the absence of vaso-occlusion, ischemia, or oxidative stress due to hemolysis. As sickle RBCs and ISCs are constantly circulating in the blood of SCD patients, our results have profound implications for SCD pathophysiology and may help explain why SCD patients develop chronic diffuse vasculopathy over time. Disclosures: No relevant conflicts of interest to declare.


2004 ◽  
Vol 279 (18) ◽  
pp. 19230-19238 ◽  
Author(s):  
Christopher G. Kevil ◽  
A. Wayne Orr ◽  
Will Langston ◽  
Kathryn Mickett ◽  
Joanne Murphy-Ullrich ◽  
...  

1998 ◽  
Vol 55 (1) ◽  
pp. 77-83 ◽  
Author(s):  
Shunichi Shimizu ◽  
Masaki Nomoto ◽  
Shinji Naito ◽  
Toshinori Yamamoto ◽  
Kazutaka Momose

Sign in / Sign up

Export Citation Format

Share Document