scholarly journals Phosphorylation of Focal Adhesion Kinase at Tyr925: Role in Glia-Dependent and Independent Migration Through Regulating Cofilin and N-Cadherin

Author(s):  
Lingzhen Song ◽  
Shanting Zhao ◽  
Michael Frotscher ◽  
Xuejun Chai

Abstract The adult neocortex is a six-layered structure, consisting of nearly continuous layers of neurons that are generated with large temporal diversity. During development, cortical neurons originating from the ventricular zone migrate towards the Reelin-containing marginal zone in an inside-out arrangement. Focal adhesion kinase (FAK), one tyrosine kinase localizing to focal adhesions, has been shown to be activated by Src, an important downstream molecule of Reelin signaling, at tyrosine 925 (Y925). Up to date, the precise molecular mechanisms of FAK and its phosphorylation at Y925 during neuronal migration are still unclear. Combining in utero electroporation with immunohistochemistry and live imaging, we examined the function of FAK in regulating neuronal migration. We show that phosphorylated FAK is colocalized with Reelin positive cells in the developing neocortex and hippocampus. Phosphorylation of FAK at Y925 is significantly reduced in reeler mice. Overexpression and dephosphorylation of FAK impair locomotion and translocation, resulting in migration inhibition and dislocation of both late-born and early-born neurons. These migration defects are highly correlated to the function of FAK in regulating cofilin phosphorylation and N-Cadherin expression, both are involved in Reelin signaling pathway. Thus, phosphorylation of focal adhesion kinase at Y925 is crucial for both glia-dependent and independent neuronal migration.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 354-354
Author(s):  
Ian S. Hitchcock ◽  
Norma E. Fox ◽  
Katherine Sear ◽  
Ralph Tiedt ◽  
Radek Skoda ◽  
...  

Abstract Megakaryopoiesis is tightly regulated by a number of hematopoietic growth factors to maintain a physiological level of circulating platelets. Thrombopoietin (TPO) is the primary regulator of megakaryopoiesis, supporting the proliferation and survival of hematopoietic stem cells, driving megakaryocyte differentiation and promoting endomitosis and proplatelet formation. However, recent findings suggest that the chemokines fibroblast growth factor-4 and stromal-derived factor-1 (SDF-1) can partially restore thrombopoiesis in the absence of TPO. These chemokines enhance survival and maturation of megakaryocyte progenitors, as well as platelet release, by promoting progenitor cell movement from the osteoblastic to the vascular niche. However, little is known at present of the molecular mechanisms involved in controlling megakaryocyte motility. Focal adhesion kinase (FAK) is essential for the migration of most cells as it mediates the assembly and disassembly of focal adhesions and we have found it to be highly enriched in megakaryocytes compared to other cells in the bone marrow. Additionally, FAK is activated by SDF-1, a key regulator of chemotaxis, and in this study we found it phosphorylated (activated) by TPO specifically at Y-577 and Y-925. Therefore FAK may be required for megakaryocyte progenitor chemotaxis from the osteoblastic to the vascular niche. In order to determine the potential role of FAK in murine thrombopoiesis we used Cre/loxP technology to conditionally delete fak specifically from megakaryocytes. Mice expressing floxed fak alleles were crossed to mice expressing Cre recombinase under the control of the platelet factor 4 (PF4) promoter; the progeny failed to express detectable levels of FAK in megakaryocytes by western blotting or immunofluorescence, whilst expression of the gene was unaltered in other tissues, including heart, liver, lung and spleen. While the platelet counts of the mutant mice were normal at steady-state, multiple compensatory mechanisms could be operative. In fact, using megakaryocyte colony assays, we observed a 4-fold increase in the number of colony forming unit-megakaryocytes (CFU-MK) in mice in which fak has been specifically deleted. To clarify the function of FAK in mature megakaryocytes, total bone marrow collected from these and control animals was grown in TPO-containing culture medium for 72 hours and mature megakaryocytes were isolated on a BSA-density gradient. No difference in megakaryocyte adhesion to fibrinogen or fibronectin was found between cells isolated from controls and mutant mice. However, chemotaxis assays using transwell-inserts with an SDF-1α gradient showed a statistically significant increase in chemotaxis in fak null megakaryocytes, compared to controls, suggesting that abnormal cell migration could account for the hematopoietic changes noted in the mice. In summary, we have successfully ablated fak specifically from the megakaryocyte lineage in vivo and are currently using this model to determine a role for this protein in megakaryopoiesis. Specific deletion of FAK in these cells enhances CFU-MK formation and promotes chemotaxis of mature megakaryocytes in response to SDF-1α, which has recently been shown to be required for megakaryocyte motility. Further, we have evidence to suggest that FAK activity is, at least in part, regulated by TPO. Therefore, we propose a previously undescribed role for FAK in megakaryopoiesis and megakaryocyte chemotaxis.


2017 ◽  
Vol 114 (8) ◽  
pp. 2036-2041 ◽  
Author(s):  
Chenglai Fu ◽  
Jing Xu ◽  
Weiwei Cheng ◽  
Tomas Rojas ◽  
Alfred C. Chin ◽  
...  

Inositol hexakisphosphate kinase 1 (IP6K1), which generates 5-diphosphoinositol pentakisphosphate (5-IP7), physiologically mediates numerous functions. We report thatIP6K1deletion leads to brain malformation and abnormalities of neuronal migration. IP6K1 physiologically associates with α-actinin and localizes to focal adhesions.IP6K1deletion disrupts α-actinin’s intracellular localization and function. TheIP6K1deleted cells display substantial decreases of stress fiber formation and impaired cell migration and spreading. Regulation of α-actinin by IP6K1 requires its kinase activity. Deletion ofIP6K1abolishes α-actinin tyrosine phosphorylation, which is known to be regulated by focal adhesion kinase (FAK). FAK phosphorylation is substantially decreased inIP6K1deleted cells. 5-IP7, a product of IP6K1, promotes FAK autophosphorylation. Pharmacologic inhibition of IP6K by TNP [N2-(m-Trifluorobenzyl), N6-(p-nitrobenzyl)purine] recapitulates the phenotype ofIP6K1deletion. These findings establish that IP6K1 physiologically regulates neuronal migration by binding to α-actinin and influencing phosphorylation of both FAK and α-actinin through its product 5-IP7.


Author(s):  
Dandan Wang ◽  
Brian W. Howell ◽  
Eric C. Olson

AbstractFetal alcohol syndrome (FAS) is characterized by disrupted fetal brain development and postnatal cognitive impairment. The targets of alcohol are diverse, and it is not clear whether there are common underlying molecular mechanisms producing these disruptions. Prior work established that acute ethanol exposure causes a transient increase in tyrosine phosphorylation of multiple proteins in cultured embryonic cortical cells. In this study, we show that a similar tyrosine phosphorylation transient occurs in the fetal brain after maternal dosing with ethanol. Using phospho-specific antibodies and immunohistochemistry, we mapped regions of highest tyrosine phosphorylation in the fetal cerebral cortex and found that areas of dendritic and axonal growth showed elevated tyrosine phosphorylation 10 min after maternal ethanol exposure. These were also areas of Src expression and Src family kinase (SFK) activation loop phosphorylation (pY416) expression. Importantly, maternal pretreatment with the SFK inhibitor dasatinib completely prevents both the pY416 increase and the tyrosine phosphorylation response. The phosphorylation response was observed in the perisomatic region and neurites of immature migrating and differentiating primary neurons. Importantly, the initial phosphotyrosine transient (~ 30 min) targets both Src and Dab1, two critical elements in Reelin signaling, a pathway required for normal cortical development. This initial phosphorylation response is followed by sustained reduction in Ser3 phosphorylation of n-cofilin, a critical actin severing protein and an identified downstream effector of Reelin signaling. This biochemical disruption is associated with sustained reduction of F-actin content and disrupted Golgi apparatus morphology in developing cortical neurons. The finding outlines a model in which the initial activation of SFKs by ethanol has the potential to disrupt multiple developmentally important signaling systems for several hours after maternal exposure.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Alisson C Cardoso ◽  
Ana H Pereira ◽  
Andre L Ambrosio ◽  
Silvio R Consonni ◽  
Sandra M Dias ◽  
...  

Members of MEF2 (Myocyte Enhancer Factor 2) family of transcription factors are major regulators of cardiac development and homeostasis. Their functions are regulated at several levels, including the association with a variety of protein partners. We have previously shown that FAK (Focal Adhesion Kinase) regulates the stretch-induced activation of MEF2 in cardiomyocytes. But, the molecular mechanisms, involved in this process, are unclear. Here, we integrated biochemical, imaging and structural analyses to characterize a novel interaction between MEF2 and FAK. An association between MEF2 and FAK was detected by co-immunoprecipitation in the extracts of stretched cardiomyocytes (10%, 60Hz, 2 hours). MEF2 and FAK staining were co-localized in the nuclei of stretched cells. Pull down assays indicated that the Focal Adhesion Targeting (FAT) domain is sufficient to confer FAK interaction with MEF2. Gene reporter assays indicated that the interaction with FAK enhances the MEF2C transcriptional activity in cultured cardiomyocytes. Also, we present a 2.9-Å X-ray crystal structure for the FAK_FAT domain bound to MEF2C (1-95), comprised by the MADS box/MEF2 domain. The structural information, when used in combination with biochemical studies, small-angle X-ray scattering (SAXS) data and reporter gene assay, lead to a mechanistic model describing how FAK binds to MEF2C and stimulates its transcription function in cardiomyocytes. We further validated this model by showing that the binding of FAK to MEF2C is essential for the hypertrophy of cardiomyocyte in response to mechanical stress. Our results present FAK as a new positive regulator of MEF2, implicated in the fine control of the signal transduction between focal adhesions and the nucleus of cardiac myocytes during mechanical stress.


2009 ◽  
Vol 296 (3) ◽  
pp. H627-H638 ◽  
Author(s):  
Ana Maria Manso ◽  
Seok-Min Kang ◽  
Sergey V. Plotnikov ◽  
Ingo Thievessen ◽  
Jaewon Oh ◽  
...  

Migration and proliferation of cardiac fibroblasts (CFs) play an important role in the myocardial remodeling process. While many factors have been identified that regulate CF growth and migration, less is known about the signaling mechanisms involved in these processes. Here, we utilized Cre-LoxP technology to obtain focal adhesion kinase (FAK)-deficient adult mouse CFs and studied how FAK functioned in modulating cell adhesion, proliferation, and migration of these cells. Treatment of FAKflox/flox CFs with Ad/Cre virus caused over 70% reduction of FAK protein levels within a cell population. FAK-deficient CFs showed no changes in focal adhesions, cell morphology, or protein expression levels of vinculin, talin, or paxillin; proline-rich tyrosine kinase 2 (Pyk2) expression and activity were increased. Knockdown of FAK protein in CFs increased PDGF-BB-induced proliferation, while it reduced PDGF-BB-induced migration. Adhesion to fibronectin was not altered. To distinguish between the function of FAK and Pyk2, FAK function was inhibited via adenoviral-mediated overexpression of the natural FAK inhibitor FAK-related nonkinase (FRNK). Ad/FRNK had no effect on Pyk2 expression, inhibited the PDGF-BB-induced migration, but did not change the PDGF-BB-induced proliferation. FAK deficiency had only modest effects on increasing PDGF-BB activation of p38 and JNK MAPKs, with no alteration in the ERK response vs. control cells. These results demonstrate that FAK is required for the PDGF-BB-induced migratory response of adult mouse CFs and suggest that FAK could play an essential role in the wound-healing response that occurs in numerous cardiac pathologies.


2010 ◽  
pp. n/a-n/a ◽  
Author(s):  
David W. Dumbauld ◽  
Heungsoo Shin ◽  
Nathan D. Gallant ◽  
Kristin E. Michael ◽  
Harish Radhakrishna ◽  
...  

2000 ◽  
Vol 348 (1) ◽  
pp. 119-128 ◽  
Author(s):  
Madeleine TOUTANT ◽  
Jeanne-Marie STUDLER ◽  
Ferran BURGAYA ◽  
Alicia COSTA ◽  
Pascal EZAN ◽  
...  

In brain, focal adhesion kinase (FAK) is regulated by neurotransmitters and has a higher molecular mass than in other tissues, due to alternative splicing. Two exons code for additional peptides of six and seven residues (‘boxes’ 6 and 7), located on either side of Tyr397, which increase its autophosphorylation. Using in situ hybridization and a monoclonal antibody (Mab77) which does not recognize FAK containing box 7, we show that, although mRNAs coding for boxes 6 and 7 have different patterns of expression in brain, FAK+6,7 is the main isoform in forebrain neurons. The various FAK isoforms fused to green fluorescent protein were all targeted to focal adhesions in non-neuronal cells. Phosphorylation-state-specific antibodies were used to study in detail the phosphorylation of Tyr397, a critical residue for the activation and function of FAK. The presence of boxes 6 and 7 increased autophosphorylation of Tyr397 independently and additively, whereas they had a weak effect on FAK kinase activity towards poly(Glu,Tyr). Src-family kinases were also able to phosphorylate Tyr397 in cells, but this phosphorylation was decreased in the presence of box 6 or 7, and abolished in the presence of both. Thus the additional exons characteristic of neuronal isoforms of FAK do not alter its targeting, but change dramatically the phosphorylation of Tyr397. They increase its autophosphorylation in vitro and in transfected COS-7 cells, whereas they prevent its phosphorylation when co-transfected with Src-family kinases.


2004 ◽  
Vol 279 (27) ◽  
pp. 28715-28723 ◽  
Author(s):  
Grégory Giannone ◽  
Philippe Rondé ◽  
Mireille Gaire ◽  
Joël Beaudouin ◽  
Jacques Haiech ◽  
...  

1995 ◽  
Vol 182 (4) ◽  
pp. 1089-1099 ◽  
Author(s):  
K Tachibana ◽  
T Sato ◽  
N D'Avirro ◽  
C Morimoto

Focal adhesion kinase (pp125FAK) is localized to focal adhesions and tyrosine phosphorylated by the engagement of beta 1 integrins. However, it is unclear how pp125FAK is linked to integrin molecules. We demonstrate that pp125FAK is directly associated with paxillin, a 68-kD cytoskeleton protein. The COOH-terminal domain of pp125FAK spanning FAK residues 919-1042 is sufficient for paxillin binding and has vinculin-homologous amino acids, which are essential for paxillin binding. Microinjection and subsequent immunohistochemical analysis reveal that glutathione S-transferase-FAK fusion proteins, which bind to paxillin, localize to focal adhesions, whereas fusion proteins with no paxillin-binding activity do not localize to focal adhesions. These findings strongly suggest that pp125FAK is localized to focal adhesions by the direct association with paxillin.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1407-1407
Author(s):  
Sasidhar Vemula ◽  
Benjamin P. Abratigue ◽  
Premchand Gandra ◽  
John T. O’Malley ◽  
Ayek-Nati N. Ahyi ◽  
...  

Abstract Focal adhesion kinase (FAK) initially identified as a unique cytoplasmic tyrosine kinase involved in focal adhesions, has been studied extensively in fibroblasts. In these cells, FAK has been shown to play an essential role in bridging signals between integrin and growth factor receptors such as the PDGF and the EGF receptor. In fibroblasts, FAK localizes to regions of the cell that attach to the extracellular matrix and coordinates signals from integrins, cytokines, growth factor receptors, and oncogenes. In some tumors, FAK is over-expressed or constitutively activated, which correlates with increased motility, invasiveness, and proliferation. More recently, expression of FAK in acute myeloid leukemia was associated with enhanced blast migration, increased cellularity, and poor prognosis. However, virtually nothing is known about FAKs role in normal hematopoiesis. FAK is expressed in blood cells, including in bone marrow derived KIT+, Gr-1+, Mac-1+, CD4+, CD8+ and B220+ cells. To determine how loss of FAK affects hematopoiesis, we have generated a mouse model with hematopoietic restricted deletion of FAK. We deleted FAK in bone marrow cells by crossing the FAK-flox mice to Mx.Cre+ expressing mice and by treating Mx.cre+FAK+/+ and Mx.cre+FAKflox/flox mice with poly (I)-poly(C) and then analyzing mice 1 month after the last injection. After one month of poly(I)-poly(C) induction, the progeny failed to express detectable levels of FAK in bone marrow, spleen as well as in bone marrow derived macrophages as determined by PCR and western blotting. Evaluation of peripheral blood counts in control and FAK deleted mice revealed modest but significant differences in different lineages (WBC k/μl: FAK; 14 vs. FAK−/−; 10.3, n=7, *p<0.05, LY k/μl: FAK; 10.48 vs. FAK−/−; 7.26, n=7, *p<0.005, RBC k/μl: FAK; 9.76 X106 vs. FAK−/−;8.58 X106 n=7 *p<0.003, PLT k/μl: FAK; 644 vs. FAK−/−; 434 n=7 *p<0.007). Since macrophages express abundant levels of FAK and are rapidly recruited in large numbers to sites of infection, we initially examined the role of FAK in macrophages by creating a well studied model of aseptic thioglycolate-induced peritonitis. Our results demonstrate a ∼1.5 fold reduction in the migration of macrophages to the peritoneal cavity of FAK−/− mice compared to controls (n=5, FAK; 1.8 X 106 vs. FAK−/−; 1.213 X106, *p<0.03). The reduction in recruitment of FAK−/− macrophages was observed in spite of comparable levels of F4/80 expression (WT; 92.98% vs. FAK−/−; 94.55%) as well as integrin (α4β1 & α5β1) expression (WT; 68% & 83.79% vs. FAK−/−; 60.39% & 83.17%, respectively) between WT and FAK−/− macrophages. Further analysis of FAK−/− macrophages revealed a significant decrease in extracellular matrix/integrin directed migration of these cells in response to M-CSF on fibronectin (40% reduction), laminin (55% reduction) and collagen (60% reduction) (n=3, *p<0.004) coated plates as well as a decrease in migration in a wound healing assay (n=3, *p<0.003). The reduction in migration of FAK−/− macrophages was associated with a significant decrease in adhesion on fibronectin (63%), laminin (52%) and collagen (56%) as well as spreading (n=3, *p<0.03). Taken together, our results provide a critical physiologic role for FAK in regulating several adhesive and migratory functions in cells of myeloid lineage. Additional functions of FAK in other hematopoietic lineages will be discussed.


Sign in / Sign up

Export Citation Format

Share Document