scholarly journals Unique Combinations of epigenetic modifiers synergistically impair the viability of the U87 glioblastoma cell line while exhibiting minor or moderate effects on normal stem cell growth

Author(s):  
Arshak R Alexanian ◽  
Avonlea Brannon

Abstract Discoveries made over the last decade have shown that critical changes in cancer cells, such as activation of oncogenes and silencing of tumor suppressor genes are caused not only by genetic but also by epigenetic mechanisms. While epigenetic alterations are somatically heritable, in contrast to genetic changes, they are potentially reversible, making them perfect targets for therapeutic intervention. Covalent modifications of chromatin, such as methylation of DNA and acetylation and methylation of histones, are important components of epigenetic machinery. Multiple recent studies have shown that epigenetic modifiers are candidates for potent new drugs in multiple cancers’ therapies, including gliomas, and several clinical trials are ongoing. However, as with other chemotherapeutic drugs, toxicity is one of the main concerns with some of the potent epigenetic drugs. Synergistic combinations of these agents are one approach to overcoming toxicity issues while enhancing efficacy. In this study we demonstrated that while individually BIX01294, an inhibitor of histone methyltransferase G9a, DZNep, an inhibitor of lysine methyltransferase EZH2, and Trichostatin A (TSA), an inhibitor of histone deacetylase at their low concentrations showed a moderate effect on the viability of U87 glioblastoma cells, in combinations they exhibited a synergistic effect. Importantly, these combinations exhibited minimal effect on adipose mesenchymal stem cells (AD-MSCs) growth. Thus, unique combinations and concentrations of epigenetic modifiers, that synergistically attenuated the U87 glioblastoma cells while exhibiting minor or moderate effects on normal stem cell growth, have been discovered.

GYNECOLOGY ◽  
2018 ◽  
Vol 20 (4) ◽  
pp. 9-11 ◽  
Author(s):  
V V Sobolev ◽  
Z A Nevozinskaya ◽  
A G Soboleva ◽  
I M Korsunskaya

The review is devoted to genetic research in cancer of the vulva. In genetic changes, the mutation irreversibly changes the nucleotide sequence of DNA, or the number of copies of chromosomes changes per cell. In epigenetics, the nucleotide sequence remains unchanged, but gene activity is regulated by methylation of DNA or modification of histones. Most of the studies analyzed are devoted to the study of mutations in the TP53 gene. Many studies indicate that somatic mutations are more common in HPV-negative than in HPV-positive patients. Epigenetic studies in the main devoted to hypermethylation. The gene CDKN2A is most often studied in epigenetic terms. For most of the studied genes, hypermethylation occurs more often in squamous cell carcinoma of the vulva than in the precursors.


2012 ◽  
Vol 186 (11) ◽  
pp. 1180-1188 ◽  
Author(s):  
Chi-Tai Yeh ◽  
Alexander T. H. Wu ◽  
Peter M.-H. Chang ◽  
Kuan-Yu Chen ◽  
Chia-Ning Yang ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Pin Guo ◽  
Yanan Yu ◽  
Huanting Li ◽  
Daoxiang Zhang ◽  
Anjing Gong ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3523
Author(s):  
Wancheng Guo ◽  
Haiqin Wang ◽  
Peng Chen ◽  
Xiaokai Shen ◽  
Boxin Zhang ◽  
...  

Multiple myeloma (MM) is a B-cell tumor of the blood system with high incidence and poor prognosis. With a further understanding of the pathogenesis of MM and the bone marrow microenvironment, a variety of adjuvant cell therapies and new drugs have been developed. However, the drug resistance and high relapse rate of MM have not been fundamentally resolved. Studies have shown that, in patients with MM, there is a type of poorly differentiated progenitor cell (MM stem cell-like cells, MMSCs). Although there is no recognized standard for identification and classification, it is confirmed that they are closely related to the drug resistance and relapse of MM. This article therefore systematically summarizes the latest developments in MMSCs with possible markers of MMSCs, introduces the mechanism of how MMSCs work in MM resistance and recurrence, and discusses the active pathways that related to stemness of MM.


2016 ◽  
Vol 344 (2) ◽  
pp. 153-166 ◽  
Author(s):  
Yi-Chao Hsu ◽  
Chien-Yu Kao ◽  
Yu-Fen Chung ◽  
Don-Ching Lee ◽  
Jen-Wei Liu ◽  
...  

2016 ◽  
Vol 12 (4) ◽  
pp. 2485-2492 ◽  
Author(s):  
Birgitt Wolfesberger ◽  
Andrea Fuchs-Baumgartinger ◽  
Juraj Hlavaty ◽  
Florian R. Meyer ◽  
Martin Hofer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document