scholarly journals A High-robust Sensor Activity Control Algorithm for Wireless Sensor Networks

Author(s):  
Rong-Guei Tsai ◽  
Pei-Hsuan Tsai

Abstract In wireless sensor networks, it is important to use the best number of sensors to optimize the network and consider the key design and cost. Owing to the limited power of sensors, how controlling the state of the sensor through an automatic control algorithm and power-saving and efficient distribution of work have become important issues. However, sensor nodes are usually deployed in dangerous or inaccessible locations. Therefore, it is difficult and impractical to supply power to sensors through humans. In this study, we propose a high-reliability control algorithm with fast convergence and strong self-organization ability, called sensor activity control algorithm (SACA), which can efficiently control the number of sensors in the active state and extend their use time. SACA considers the relationship between the total number of inactive sensors and the target value and determines the state of the sensor in the next round. The data transmission technology of random access is used between the sensor and the base station; therefore, the sensor in the sleep state does not need to receive the feedback packet from the base station. The sensor can achieve true dormancy and power-saving effects. The experimental results show that SACA has fast convergence, strong self-organization capabilities, and power-saving advantages.

2019 ◽  
Vol 28 (05) ◽  
pp. 1930005 ◽  
Author(s):  
Sergio Diaz ◽  
Diego Mendez ◽  
Rolf Kraemer

We present the state-of-the-art related to self-organizing and self-healing techniques. On the one hand, self-organization is the nodes’ ability to construct a network topology without any human intervention and any previous topology knowledge. On the other hand, self-healing is the network’s ability to recover from failures by using hardware and software redundancies. By using both techniques, Wireless Sensor Networks (WSNs) can be deployed in unattended and harsh environments where on-site technical service is unfeasible. In the last few years, a large amount of work has been done in these two research areas, but these different techniques occur at different layers and with no general classification or effort to consolidate them. One of the contributions of this paper is the consolidation of the most significant and relevant mechanisms in these two areas, and additionally, we made an effort to organize and classify them. In this review, we explain in detail the two stages of self-organization, namely topology construction and management. Moreover, we present a comprehensive study of the four steps in a self-healing technique, namely, information collection, fault detection, fault classification and fault recovery. By introducing relevant work, comparative tables, and future trends, we provide the reader with a complete picture of the state-of-the-art. Another contribution is the proposal of a unified framework that employs self-organizing and self-healing mechanisms to achieve a fault-tolerant network.


Author(s):  
Asgarali Bouyer ◽  
Abdolreza Hatamlou

Wireless Sensor Networks (WSNs) consist of many sensor nodes, which are used for capturing the essential data from the environment and sending it to the Base Station (BS). Most of the research has been focused on energy challenges in WSN. There are many notable studies on minimization of energy consumption during the process of sensing the important data from the environment where nodes are deployed. Clustering-based routing protocols are an energy-efficient protocols that improve the lifetime of a wireless sensor network. The objective of the clustering is to decrease the total transmission power by aggregating into a single path for prolonging the network lifetime. However, the problem of unbalanced energy consumption exists in some cluster nodes in the WSNs. In this paper, a hybrid algorithm is proposed for clustering and cluster head (CH) election. The proposed routing protocol hybridized Penalized Fuzzy C-Means (PFCM) and Self Organization Map (SOM) algorithms with LEACH protocol for the optimum numbers of the CHs and the location of them. Simulation results reveal that the proposed algorithm outperforms other existing protocols in terms of network life, number of dead sensor nodes, energy consumption of the network and convergence rate of the algorithm in comparison to the LEACH algorithm.


Author(s):  
Vo Que Son ◽  
Do Tan A

Sensing, distributed computation and wireless communication are the essential building components of a Cyber-Physical System (CPS). Having many advantages such as mobility, low power, multi-hop routing, low latency, self-administration, utonomous data acquisition, and fault tolerance, Wireless Sensor Networks (WSNs) have gone beyond the scope of monitoring the environment and can be a way to support CPS. This paper presents the design, deployment, and empirical study of an eHealth system, which can remotely monitor vital signs from patients such as body temperature, blood pressure, SPO2, and heart rate. The primary contribution of this paper is the measurements of the proposed eHealth device that assesses the feasibility of WSNs for patient monitoring in hospitals in two aspects of communication and clinical sensing. Moreover, both simulation and experiment are used to investigate the performance of the design in many aspects such as networking reliability, sensing reliability, or end-to-end delay. The results show that the network achieved high reliability - nearly 97% while the sensing reliability of the vital signs can be obtained at approximately 98%. This indicates the feasibility and promise of using WSNs for continuous patient monitoring and clinical worsening detection in general hospital units.


2014 ◽  
Vol 24 (8) ◽  
pp. 2151-2164 ◽  
Author(s):  
Shu-Sheng WEN ◽  
Jiong HUANG ◽  
Ting SHU ◽  
Wei-Qiang XU ◽  
Ya-Ming WANG

Author(s):  
Omkar Singh ◽  
Vinay Rishiwal

Background & Objective: Wireless Sensor Network (WSN) consist of huge number of tiny senor nodes. WSN collects environmental data and sends to the base station through multi-hop wireless communication. QoS is the salient aspect in wireless sensor networks that satisfies end-to-end QoS requirement on different parameters such as energy, network lifetime, packets delivery ratio and delay. Among them Energy consumption is the most important and challenging factor in WSN, since the senor nodes are made by battery reserved that tends towards life time of sensor networks. Methods: In this work an Improve-Energy Aware Multi-hop Multi-path Hierarchy (I-EAMMH) QoS based routing approach has been proposed and evaluated that reduces energy consumption and delivers data packets within time by selecting optimum cost path among discovered routes which extends network life time. Results and Conclusion: Simulation has been done in MATLAB on varying number of rounds 400- 2000 to checked the performance of proposed approach. I-EAMMH is compared with existing routing protocols namely EAMMH and LEACH and performs better in terms of end-to-end-delay, packet delivery ratio, as well as reduces the energy consumption 13%-19% and prolongs network lifetime 9%- 14%.


2016 ◽  
Vol 26 (1) ◽  
pp. 17
Author(s):  
Carlos Deyvinson Reges Bessa

ABSTRACTThis work aims to study which wireless sensor network routing protocol is more suitable for Smart Grids applications, through simulation of AODV protocols, AOMDV, DSDV and HTR in the NS2 simulation environment. Was simulated a network based on a residential area with 47 residences, with one node for each residence and one base station, located about 25m from the other nodes. Many parameters, such as packet loss, throughput, delay, jitter and energy consumption were tested.  The network was increased to 78 and 93 nodes in order to evaluate the behavior of the protocols in larger networks. The tests proved that the HTR is the routing protocol that has the best results in performance and second best in energy consumption. The DSDV had the worst performance according to the tests.Key words.- Smart grid, QoS analysis, Wireless sensor networks, Routing protocols.RESUMENEste trabajo tiene como objetivo estudiar el protocolo de enrutamiento de la red de sensores inalámbricos es más adecuado para aplicaciones de redes inteligentes, a través de la simulación de protocolos AODV, AOMDV, DSDV y HTR en el entorno de simulación NS2. Se simuló una red basada en una zona residencial con 47 residencias, con un nodo para cada residencia y una estación base, situada a unos 25 metros de los otros nodos. Muchos parámetros, tales como la pérdida de paquetes, rendimiento, retardo, jitter y el consumo de energía se probaron. La red se incrementó a 78 y 93 nodos con el fin de evaluar el comportamiento de los protocolos de redes más grandes. Las pruebas demostraron que el HTR es el protocolo de enrutamiento que tiene los mejores resultados en el rendimiento y el segundo mejor en el consumo de energía. El DSDV tuvo el peor desempeño de acuerdo a las pruebas.Palabras clave.- redes inteligentes, análisis de calidad de servicio, redes de sensores inalámbricas, protocolos de enrutamiento.


Sign in / Sign up

Export Citation Format

Share Document