Catalytic Reduction Performance of Carboxylated Alginic Acid Derivatives

Author(s):  
Raed H. Althomali ◽  
Khalid A. Alamry ◽  
Mahmoud Hussein Abdo ◽  
Shams H. Abdel-Hafez

Abstract In this study, the catalytic reduction behavior of carboxylated alginic acid derivatives has been investigated against the harmful organic dyes including Methyl Orange (MO) and Congo Red (CR). Alginic acid was firstly oxidized through an easy addition of KMnO4 as an oxidizing agent. A carboxylated alginic acid (CAA) has been interacted with selected metal ions (Sn, Fe, Ni, and Zr) through coordination bonds at the value of pH = 4 to form the corresponding metal complexes namely: Sn-CAA, Fe-CAA, Ni-CAA and Zr-CAA. The consistency of the coordination was confirmed by several spectroscopic techniques including FT-IR, XRD, SEM, and EDX. The catalytic reduction of these metal ion-based products was carried out against MO and CR in the presence of NaBH4 as a reducing agent under UV irradiation. All catalysts based metal complexes showed enhanced catalytic reduction against CR compared to MO. Among all those mentioned metal complexes Sn-CAA showed the best catalytic reduction of these dyes. The time taken by the Sn-CAA for CR, and MO is 5 and 7min respectively. Ni-CAA was classified as the second efficient product against both dyes, where the reduction process took 20 and 9 min respectively. The other two catalysts took a long time for CR and MO reduction. Zr-CAA showed more than 80 % reduction of only CR dye within 20 min. Whereas, Fe-CAA did not show any significant sign of reduction against both the dyes after the same time. The order of higher catalytic reduction was illustrated as: Sn-CAA > Ni-CAA > Zr-CAA = Fe-CAA.

2017 ◽  
Vol 14 (1) ◽  
pp. 135-147
Author(s):  
Baghdad Science Journal

The free Schiff base ligand (HL1) is prepared by being mixed with the co-ligand 1, 10-phenanthroline (L2). The product then is reacted with metal ions: (Cr+3, Fe+3, Co+2, Ni+2, Cu+2 and Cd+2) to get new metal ion complexes. The ligand is prepared and its metal ion complexes are characterized by physic-chemical spectroscopic techniques such as: FT-IR, UV-Vis, spectra, mass spectrometer, molar conductivity, magnetic moment, metal content, chloride content and microanalysis (C.H.N) techniques. The results show the formation of the free Schiff base ligand (HL1). The fragments of the prepared free Schiff base ligand are identified by the mass spectrometer technique. All the analysis of ligand and its metal complexes are in good agreement with the theoretical values indicating the purity of Schiff base ligand and the metal complexes. From the above data, the molecular structures for all the metal complexes are proposed to be octahedral


2016 ◽  
Vol 13 (2) ◽  
pp. 105-114
Author(s):  
Baghdad Science Journal

New metal ion complexes were synthesized with the general formula; K[PtLCl4], [ReLCl4] and K[ML(Cl)2] where M = Pd(II), Cd(II), Zn(II) and Hg(II), from the Azo ligand (HL) [2-Hydroxy-3-((5-mercapto-1,3,4-thiadiazol-2-yl)diazenyl)-1-naphth aldehyde] (HL) the ligand was synthesized from (2-hydroxy-1-naphthaldehyde) and (5-amino-1,3,4-thiadiazole-2-thiol). The ligand and its metal complexes are characterized by phisco- chemical spectroscopic techniques (FT.IR, UV-Vis and Mass spectra, elemental analysis, molar conductivity, Atomic Absorption, Chloride contain and magnetic susceptibility). The spectral data suggest that the (HL) behaves as a bidentate ligand in all complexes. These studies revealed tetrahedral geometries for all metal complexes, except square planar for Pd(II) complex and except octahedral geometry for Pt(IV) and Re(V) complexes. The study of complexes formation via molar ratio of (M:L) as (1:1). Theoretical treatment of this ligand and its metal complexes in gas phase using Hyper chem.8 was preformed.


2009 ◽  
Vol 7 (3) ◽  
pp. 429-438 ◽  
Author(s):  
Anife Ahmedova ◽  
Vasil Atanasov ◽  
Petja Marinova ◽  
Neyko Stoyanov ◽  
Mariana Mitewa

AbstractNew 2-acyl-1,3-indandione derivatives, compounds 1–4, were obtained by condensation of 2-acetyl-1,3-indandione with benzaldehyde, thiophene-2-aldehyde, thiophene-3-aldehyde and furane-2-aldehyde, respectively. The structures of the newly synthesized 2-substituted 1,3-indandiones were characterized by means of spectroscopic methods (FT-IR, 1H and 13C NMR, UV-Vis and MS). Based on the obtained results it is suggested that the compounds exist in the exocyclic enolic form. Mass spectral fragmentation paths are also proposed. In order to verify the possibility for tautomerization processes of the newly synthesized compounds their absorption spectra were recorded in various solvents. Furthermore, the complexation properties of the compounds with metal(II) ions were also studied. A series of non-charged complexes with Cu(II), Cd(II), Zn(II), Co(II) and Ni(II) was isolated and analyzed by elemental analyses and IR. The paramagnetic Cu(II) complexes were studied by EPR and distorted, flattened tetrahedral structures are predicted. The other metal complexes show the presence of water molecules, most probably coordinated to the metal ion, thus forming octahedral geometry. Ultimately, the studied properties of the newly synthesized compounds, 1–4, suggest that they may find application as extracting agents for metal ions, rather than as optical sensors.


2020 ◽  
Vol 32 (7) ◽  
pp. 1691-1696
Author(s):  
Anuroop Kumar ◽  
Netra Pal Singh ◽  
Uma Agrawal ◽  
Kaushal Kumar

Novel metal complexes of the type [M(L)X] (where M= Cu(II), Ni(II) and Fe(III), L = N2,N6-bis(5-mercapto-1,3,4-thiadiazol-2-yl)pyridine-2,6-dicarboxamide, X= Cl−, CH3COO−) were synthesized by the reaction of pyridine-2,6-dicarboxylic acid and 2-amino-5-mercepto-1,3,4-thiadiazole. The synthesized ligand was reacted in THF with metal salts (Cu, Ni and Fe) to form complexes. Deprotonated ligand shows tridentate nature and coordinate to metal ion to form pincer cavity. In all, complexes metals were surrounded by three nitrogen atom and other site coordinated by other groups (chloride, acetate). All the synthesized complexes were characterized by spectroscopic techniques like UV-visible, 13C NMR and 1HNMR, IR spectroscopy, DSC, elemental analysis and molar conductance measurements. The ligand and its metal complexes were tested for antimicrobial activity against bacterial and fungal strains by determining inhibition zone, minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC). The complexes showed moderate antimicrobial activity and antifungal activity when tested against bacteria and fungi


2019 ◽  
Vol 31 (11) ◽  
pp. 2430-2438 ◽  
Author(s):  
Vian Yamin Jirjees ◽  
Veyan Taher Suleman ◽  
Abbas Ali Salih Al-Hamdani ◽  
Suzan Duraid Ahmed

A new Schiff base [1-((2-(1H-indol-3-yl)ethylimino)methyl)naphthalene-2-ol] (HL) has been synthesized by condensing (2-hydroxy-1-naphthaldehyde) with (2-(1H-indol-3-yl)ethylamine). In turn, its transition metal complexes were prepared having the general formula; [Pt(IV)Cl2(L)2], [Re(V)Cl2(L)2]Cl and [Pd(L)2], 2K[M(II)Cl2(L)2] where M(II) = Co, Ni, Cu] are reported. Ligand as well as metal complexes are characterized by spectroscopic techniques such as FT-IR, UV-visible, 13C & 1H NMR, mass, elemental analysis. The results suggested that the ligand behaves like a bidentate ligand for all the synthesized complexes. On the other hand, theoretical studies of the ligand as well its metal complexes were conducted at gas phase using HyperChem 8.0. These metal complexes exhibited good antibacterial activity.


2011 ◽  
Vol 699 ◽  
pp. 273-279
Author(s):  
A. Xavier ◽  
R Sathya ◽  
D. Usha ◽  
P.S. Harikrishnan

A series of metal complexes have been synthesized by the reaction of Schiff base with metal (II) salt solution. The complexes were characterized by UV and FT- IR studies. The study reveals that the geometry of the complexes were octahedral. The electronic spectra of these complexes show a strong absorption band in 550 – 580 nm region. This confirms the coordination of ligand with metal. The FT-IR shows a very strong band at 1606cm-1 assigned to C=N stretching vibration. It is shifted to lower wave number because of the complex formation, suggesting that coordination of the Schiff base groups through N- atoms with the metal ion. The band at 3056cm-1 is due to aromatic O-H stretching, the sharp peak at 750 cm-1 and 688 cm-1 are due to halogens substituted in the para position.


2012 ◽  
Vol 9 (3) ◽  
pp. 1543-1549
Author(s):  
Eman Turky Shamkhy ◽  
Isam Hussain T. Al-Karkhi

A novel Schiff base 2-{(E)-[(2,4-dichlorophenyl)imino]methyl}phenol (LB) was synthesized from the condensation reaction of 2,4-dichloroaniline with salicyladehyde in [1:1] ratio in the presence of glacial acetic acid as catalyst. Complexation reaction of this Schiff base with copper (II), cobalt (II) as nitrate salts and with Rhodium (III) as chloride salt to produce three coordinate metal complexes, with a Schiff base: Metal ion ratio of 2:1. These compounds have been characterized by a variety of physico-chemical and spectroscopic techniques. The ligand and its metal complexes were expected to show an interesting bioactivity and cytotoxicity.


2016 ◽  
Vol 13 (4) ◽  
pp. 793-805
Author(s):  
Baghdad Science Journal

The new 4-[(7-chloro-2,1,3-benzoxadiazole)azo]-4,5-diphenyl imidazole (L) have been synthesized and characterized by micro elemental and thermal analyses as well as 1H.NMR, FT-IR, and UV-Vis spectroscopic techniques. (L) acts as a ligand coordinating with some metal ionsV(IV), Fe(III), Co(II), Ni(II), Cu(II), and Zn(II). Structures of the new compounds were characterized by elemental and thermal analyses as well as FT-IR and UV-Vis Spectra. The magnetic properties and electrical conductivities of metal complexes were also determined. Study of the nature of the complexes formed in ethanol following the mole ratio method.. The work also include a theoretical treatment of the formed complexes in the gas phase, this was done using the (hyperchem-8) program for the molecular mechanics and semi-empirical calculations. The heat of formation (?Hf?), binding energy (?Eb)and total energy (?ET) for ligand and their metal complexes were calculated by (PM3) method at 298 K.The electrostatic potential of the ligand (L) was calculated to investigate the reactive sites of the molecules. PM3 were used to evaluate the vibrational and electronic spectra for the ligand (L) and their metal complexes then comparing with the experimental values. The antibacterial activity for the (L)and its metal complexes were studied against two types of pathogenic bacteria Pseudonomous aerugionosa as gram negative and Bacillus subtilis as gram positive. Furthermore, the antifungal activity against two fungi Candida albicans, and Aspergillus flavus was studied for (L) and its metal complexes.


Author(s):  
R. Govindharaju ◽  
P. Durairaj ◽  
T. Maruthavanan ◽  
M. Marlin Risana ◽  
T. Ramachandramoorthy

Cr(III) and Mn(II) metal complexes of Schiff base ligand derived from phenylacetylurea condensed with salicylaldehyde (SBPS) and thiocyanate(SCN-) ion were synthesized by using microwave irradiation. Microwave assisted synthesis gives high yield of the complexes within a very short time. The molecular formulae and the geometry of the complexes have been deduced from elemental analysis, metal estimation, electrical conductance, magnetic moment, electronic spectra, FT- IR, Far IR spectra, cyclic voltammetry, thermal analysis and powder-XRD techniques. The molar conductance values indicate that the complexes are non-electrolyte (1:0) type. FT-IR spectra show that Schiff base and thiocyanate ion are coordinated to the metal ion in a monodentate manner. The electronic spectra and the magnetic moment indicate the geometry of the complexes is found to be octahedral. The antimicrobial activities of ligands and their Cr(III) and Mn(II) complexes were studied against the microorganisms, viz., E. coli, Klebsiella Pneumonia, P. aeruginosa, S. aureus, Bacillus cereus, Aspergillus flavus, Aspergillus niger, Aspergillus oryzae, Aspergillus sojae and Candida albicans by agar well diffusion method. The complexes show moderate activity against the bacteria and enhanced activity against the fungi as compared to free SBPS ligand. The free radical scavenging activity of the complexes and the ligands has been determined by measuring their interaction with the stable free radical, DPPH. The complexes have larger antioxidant activity as compared to the ligand. DNA-binding properties have been studied by fluorescence-emissions method. The results suggest that the complexes strongly bind to DNA because of metal complexes are well-known to speed up the drug action and the ability of a therapeutic agent which can frequently be enhanced upon coordination with a metal ion.


2017 ◽  
Vol 14 (3) ◽  
pp. 575-581
Author(s):  
Baghdad Science Journal

Acetophenone sulfamethoxazole and 3-Nitrobenzophenone sulfamethoxazole were prepared from the reaction of sulfamethoxazole with two ketones. The prepared ligands were identified by (C.H.N) analysis and UV-VIS, FT-IR spectroscopic techniques. Metal complexes of the two ligands were prepared in an aqueous alcohol with Zn (II), Mn (II) and Cu (II) ions with a molar ratio1:1. The proposed general formula for the resulting complexes was [ML.CL2.H2O]H2O .The complexes were characterized by (C.H.N) technique , spectroscopic methods ,conductivity, atomic absorption ,magnetic susceptibility measurements and melting point. According to the results obtained, the suggested geometry is to be octahedral for all the complexes.


Sign in / Sign up

Export Citation Format

Share Document