scholarly journals Reaction Mechanism About Isomerization of Resin Acids and Synthesis of Acrylopimaric Acid Based on DFT Calculation

Author(s):  
Wu-Ji Lai ◽  
Jia-Hao Lu ◽  
Rui Jiang ◽  
Lei Zeng ◽  
Ai-qun Wu ◽  
...  

Abstract Acrylopimaric acid is considered one of the possible substitutes for petroleum-based polymeric monomers, which is an important industrial product. Resin acids were isomerized to form levopimaric acid(4), which reacted with acrylic acid to synthesize isomers of acrylopimaric acid. Density functional theory calculation was used to investigate the reaction mechanisms with seven reaction paths in five different solutions. The values of ΔG were sorted from highest to lowest by levopimaric acid(4), neoabietic acid(3), palustric acid(2), and bietic acid(1). From the perspective of dynamics, the energy barrier in the isomerization of palustric acid(2) to levopimaric acid(4) was the lowest, whereas the highest energy barrier was the isomerization of neoabietic acid(3) to levopimaric acid(4) in the same solution. The addition reaction of levopimaric acid(4) and acrylic acid(5) to acrylopimaric acid c(8) was the optimal reaction path dynamically. However, ΔG of acrylopimaric acid c(8) was higher than that of acrylopimaric acid d(9). In general, the rates of isomerization reactions for rosin resin acids and addition reaction for acrylopimaric acid in water were higher than those in other solvents. HOMO-LUMO and ESP were analyzed for 8 kinds of molecules. For acylpyimaric acid, the non-planar six-memed ring and the C-C double bonds were easily attacked by nucleophile, while the non-planar six-memed ring and the carboxyl group are easily reacted with electrophiles. The highest electrostatic potential of the eight molecules is located at H of the carboxyl group, while the highest electrostatic potential is located at C-O double bond of the carboxyl group.

RSC Advances ◽  
2016 ◽  
Vol 6 (74) ◽  
pp. 69861-69868 ◽  
Author(s):  
Q. G. Jiang ◽  
W. C. Wu ◽  
J. F. Zhang ◽  
Z. M. Ao ◽  
Y. P. Wu ◽  
...  

Vacancy defects significantly depress the energy barrier for dissociative adsorption of H2 on silicene, which can open the band gap of silicene.


2018 ◽  
Vol 17 (08) ◽  
pp. 1850050 ◽  
Author(s):  
Qiuhan Luo ◽  
Gang Li ◽  
Junping Xiao ◽  
Chunhui Yin ◽  
Yahui He ◽  
...  

Sulfonylureas are an important group of herbicides widely used for a range of weeds and grasses control particularly in cereals. However, some of them tend to persist for years in environments. Hydrolysis is the primary pathway for their degradation. To understand the hydrolysis behavior of sulfonylurea herbicides, the hydrolysis mechanism of metsulfuron-methyl, a typical sulfonylurea, was investigated using density functional theory (DFT) at the B3LYP/6-31[Formula: see text]G(d,p) level. The hydrolysis of metsulfuron-methyl resembles nucleophilic substitution by a water molecule attacking the carbonyl group from aryl side (pathway a) or from heterocycle side (pathway b). In the direct hydrolysis, the carbonyl group is directly attacked by one water molecule to form benzene sulfonamide or heterocyclic amine; the free energy barrier is about 52–58[Formula: see text]kcal[Formula: see text]mol[Formula: see text]. In the autocatalytic hydrolysis, with the second water molecule acting as a catalyst, the free energy barrier, which is about 43–45[Formula: see text]kcal[Formula: see text]mol[Formula: see text], is remarkably reduced by about 11[Formula: see text]kcal[Formula: see text]mol[Formula: see text]. It is obvious that water molecules play a significant catalytic role during the hydrolysis of sulfonylureas.


2021 ◽  
Vol 9 (12) ◽  
pp. 4316-4321
Author(s):  
L.-B. Meng ◽  
S. Ni ◽  
Z. M. Zhang ◽  
S. K. He ◽  
W. M. Zhou

Density functional theory calculation predicts a novel ordered boron phosphorus codoped graphene realizing a widely tunable Dirac-cone gap.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaowen Chen ◽  
Mi Peng ◽  
Xiangbin Cai ◽  
Yunlei Chen ◽  
Zhimin Jia ◽  
...  

AbstractMetal nanoparticle (NP), cluster and isolated metal atom (or single atom, SA) exhibit different catalytic performance in heterogeneous catalysis originating from their distinct nanostructures. To maximize atom efficiency and boost activity for catalysis, the construction of structure–performance relationship provides an effective way at the atomic level. Here, we successfully fabricate fully exposed Pt3 clusters on the defective nanodiamond@graphene (ND@G) by the assistance of atomically dispersed Sn promoters, and correlated the n-butane direct dehydrogenation (DDH) activity with the average coordination number (CN) of Pt-Pt bond in Pt NP, Pt3 cluster and Pt SA for fundamentally understanding structure (especially the sub-nano structure) effects on n-butane DDH reaction at the atomic level. The as-prepared fully exposed Pt3 cluster catalyst shows higher conversion (35.4%) and remarkable alkene selectivity (99.0%) for n-butane direct DDH reaction at 450 °C, compared to typical Pt NP and Pt SA catalysts supported on ND@G. Density functional theory calculation (DFT) reveal that the fully exposed Pt3 clusters possess favorable dehydrogenation activation barrier of n-butane and reasonable desorption barrier of butene in the DDH reaction.


2015 ◽  
Vol 14 (03) ◽  
pp. 1550020 ◽  
Author(s):  
Yuan Yuan ◽  
Wei Hu ◽  
Xuhui Chi ◽  
Cuihua Li ◽  
Dayong Gui ◽  
...  

The oxidation mechanism of diethyl ethers by NO2was carried out using density functional theory (DFT) at the B3LYP/6-31+G (d, p) level. The oxidation process of ether follows four steps. First, the diethyl ether reacts with NO2to produce HNO2and diethyl ether radical with an energy barrier of 20.62 kcal ⋅ mol-1. Then, the diethyl ether radical formed in the first step directly combines with NO2to form CH3CH ( ONO ) OCH2CH3. In the third step, the CH3CH ( ONO ) OCH2CH3was further decomposed into the CH3CH2ONO and CH3CHO with a moderately high energy barrier of 32.87 kcal ⋅ mol-1. Finally, the CH3CH2ONO continues to react with NO2to yield CH3CHO , HNO2and NO with an energy barrier of 28.13 kcal ⋅ mol-1. The calculated oxidation mechanism agrees well with Nishiguchi and Okamoto's experiment and proposal.


Sign in / Sign up

Export Citation Format

Share Document