scholarly journals Large-Scale Engineering and Cryopreservation of hiPSC-Derived Nephron Sheets

Author(s):  
Loes E. Wiersma ◽  
M. Cristina Avramut ◽  
Ellen Lievers ◽  
Ton J. Rabelink ◽  
Cathelijne W van den Berg

Abstract Background The generation of human induced pluripotent stem cells (hiPSCs) has opened a world of opportunities for stem cell-based therapies in regenerative medicine. Currently, several human kidney organoid protocols are available that generate organoids containing kidney structures. However, these kidney organoids are relatively small ranging up to 0.13 cm2 and therefore contain a small number of nephrons compared to an adult kidney, thus defying the exploration of future use for therapy. Method We have developed a scalable, easily accessible, and reproducible to increase the size of the organoid up to a nephron sheet of 2.5 cm2 up to a maximum of 12.6 cm2 containing a magnitude of nephrons. Results Confocal microscopy showed that the subunits of the nephrons remain evenly distributed throughout the entire sheet and that these tissue sheets can attain ~30,000-40,000 glomerular structures. Upon transplantation in immunodeficient mice, such nephron sheets became vascularized and matured. They also show reuptake of injected low-molecular mass dextran molecules in the tubular structures, indicative of glomerular filtration. Furthermore, we developed a protocol for the cryopreservation of intermediate mesoderm cells during the differentiation and demonstrate that these cells can be successfully thawed and recovered to create such tissue sheets. Conclusion The scalability of the procedures, and the ability to cryopreserve the cells during differentiation are important steps forward in the translation of these differentiation protocols to future clinical applications such as transplantable auxiliary kidney tissue.

2017 ◽  
Author(s):  
Aneta Przepiorski ◽  
Veronika Sander ◽  
Tracy Tran ◽  
Jennifer A. Hollywood ◽  
Brie Sorrenson ◽  
...  

SummaryKidney organoids generated from human pluripotent stem cells have the potential to revolutionize how kidney development and injury are studied. Current protocols are technically complex and suffer from poor reproducibility and high reagent costs restricting scalability. To overcome these issues, we have established a simple, inexpensive and robust method to grow kidney organoids in bulk from human induced pluripotent stem cells. Our organoids develop tubular structures by day (d) 8 and show optimal tissue morphology at d14. A comparison with fetal human kidney suggests that d14 organoid renal structures most closely resemble ‘capillary loop’ stage nephrons. We show that deletion of HNF1B, a transcription factor linked to congenital kidney defects, interferes with tubulogenesis, validating our experimental system for studying renal developmental biology. Taken together, our protocol provides a fast, efficient and cost-effective method for generating large quantities of human fetal kidney tissue, enabling the study of normal and aberrant human renal development.


2021 ◽  
Author(s):  
Jin Wook Hwang ◽  
Christophe Desterke ◽  
Julien Loisel-Duwattez ◽  
Frank Griscelli ◽  
Annelise Bennaceur-Griscelli ◽  
...  

AbstractBackgroundIn mammalians, hematopoietic stem cells (HSC) arise in the dorsal aorta from the hemogenic endothelium, followed by their migration to fetal liver and to bone marrow. In zebrafish, kidney is the site of primary hematopoiesis. In humans, the presence of HSC in the fetal or adult kidney has not been established.MethodsWe analyzed the presence of HSC markers in human fetal kidneys by analysis of single-cell datasets. We then analyzed in kidney organoids derived from iPSC, the presence of hematopoietic markers using transcriptome analyses.Results12 clusters were identified of stromal, endothelial, and nephron cell type-specific markers in the two fetal stage (17 weeks) kidney datasets. Among these, expression of hematopoietic cells in Cluster 9 showed expression of primitive markers. Moreover, whole transcriptome analysis of our iPSC-derived kidney organoids revealed induction of the primitive hematopoietic transcription factor RUNX1 as found in the human fetal kidney cortex.ConclusionsThese finding support the presence of cells expressing HSC transcriptome in human kidney. The mechanisms of the appearance of the cells with the same transcriptional features during iPSC-derived kidney organoid generation requires further investigation.


Author(s):  
Jin Wook Hwang ◽  
Christophe Desterke ◽  
Julien Loisel-Duwattez ◽  
Frank Griscelli ◽  
Annelise Bennaceur-Griscelli ◽  
...  

BackgroundIn mammalians, hematopoietic stem cells (HSCs) arise in the dorsal aorta from the hemogenic endothelium, followed by their migration to the fetal liver and to the bone marrow. In zebrafish, the kidney is the site of primary hematopoiesis. In humans, the presence of HSCs in the fetal or adult kidney has not been established.MethodsWe analyzed the presence of HSC markers in the human fetal kidneys by analysis of single-cell datasets. We then analyzed in kidney organoids derived from induced pluripotent stem cells (iPSCs) the presence of hematopoietic markers using transcriptome analyses.ResultsTwelve clusters were identified as stromal, endothelial, and nephron cell type-specific markers in the two fetal stage (17 weeks) kidney datasets. Among these, the expression of hematopoietic cells in cluster 9 showed an expression of primitive markers. Moreover, whole transcriptome analysis of our iPSC-derived kidney organoids revealed induction of the primitive hematopoietic transcription factor RUNX1 as found in the human fetal kidney cortex.ConclusionThese finding support the presence of cells expressing HSC transcriptome in the human kidney. The mechanisms of the appearance of the cells with the same transcriptional features during iPSC-derived kidney organoid generation require further investigation.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Ping Huang ◽  
Yibin Li ◽  
M. I. Nasser ◽  
Huiming Guo ◽  
Huanlei Huang ◽  
...  

Recent studies have demonstrated that stem cells are equipped with the potential to differentiate into various types of cells, including cardiomyocytes. Meanwhile, stem cells are highly promising in curing cardiovascular diseases. However, owing to the ethical challenges posed in stem cell acquisition and the complexity and invasive nature of the method, large-scale expansions and clinical applications in the laboratory have been limited. The current generation of cardiomyocytes is available from diverse sources; urine is one of the promising sources among them. Although advanced research was established in the generation of human urine cells as cardiomyocytes, the reprogramming of urine cells to cardiomyocytes remains unclear. In this context, it is necessary to develop a minimally invasive method to create induced pluripotent stem cells (iPSCs). This review focuses on the latest advances in research on urine-derived iPSCs and their application mechanisms in cardiovascular diseases.


Author(s):  
Navin Gupta✉ ◽  
Emre Dilmen ◽  
Ryuji Morizane

Abstract The kidneys are essential organs that filter the blood, removing urinary waste while maintaining fluid and electrolyte homeostasis. Current conventional research models such as static cell cultures and animal models are insufficient to grasp the complex human in vivo situation or lack translational value. To accelerate kidney research, novel research tools are required. Recent developments have allowed the directed differentiation of induced pluripotent stem cells to generate kidney organoids. Kidney organoids resemble the human kidney in vitro and can be applied in regenerative medicine and as developmental, toxicity, and disease models. Although current studies have shown great promise, challenges remain including the immaturity, limited reproducibility, and lack of perfusable vascular and collecting duct systems. This review gives an overview of our current understanding of nephrogenesis that enabled the generation of kidney organoids. Next, the potential applications of kidney organoids are discussed followed by future perspectives. This review proposes that advancement in kidney organoid research will be facilitated through our increasing knowledge on nephrogenesis and combining promising techniques such as organ-on-a-chip models.


2019 ◽  
Vol 30 (10) ◽  
pp. 1811-1823 ◽  
Author(s):  
Jessica M. Vanslambrouck ◽  
Sean B. Wilson ◽  
Ker Sin Tan ◽  
Joanne Y.-C. Soo ◽  
Michelle Scurr ◽  
...  

BackgroundThe generation of reporter lines for cell identity, lineage, and physiologic state has provided a powerful tool in advancing the dissection of mouse kidney morphogenesis at a molecular level. Although use of this approach is not an option for studying human development in vivo, its application in human induced pluripotent stem cells (iPSCs) is now feasible.MethodsWe used CRISPR/Cas9 gene editing to generate ten fluorescence reporter iPSC lines designed to identify nephron progenitors, podocytes, proximal and distal nephron, and ureteric epithelium. Directed differentiation to kidney organoids was performed according to published protocols. Using immunofluorescence and live confocal microscopy, flow cytometry, and cell sorting techniques, we investigated organoid patterning and reporter expression characteristics.ResultsEach iPSC reporter line formed well patterned kidney organoids. All reporter lines showed congruence of endogenous gene and protein expression, enabling isolation and characterization of kidney cell types of interest. We also demonstrated successful application of reporter lines for time-lapse imaging and mouse transplantation experiments.ConclusionsWe generated, validated, and applied a suite of fluorescence iPSC reporter lines for the study of morphogenesis within human kidney organoids. This fluorescent iPSC reporter toolbox enables the visualization and isolation of key populations in forming kidney organoids, facilitating a range of applications, including cellular isolation, time-lapse imaging, protocol optimization, and lineage-tracing approaches. These tools offer promise for enhancing our understanding of this model system and its correspondence with human kidney morphogenesis.


Sign in / Sign up

Export Citation Format

Share Document