scholarly journals 3D kidney organoids for bench-to-bedside translation

Author(s):  
Navin Gupta✉ ◽  
Emre Dilmen ◽  
Ryuji Morizane

Abstract The kidneys are essential organs that filter the blood, removing urinary waste while maintaining fluid and electrolyte homeostasis. Current conventional research models such as static cell cultures and animal models are insufficient to grasp the complex human in vivo situation or lack translational value. To accelerate kidney research, novel research tools are required. Recent developments have allowed the directed differentiation of induced pluripotent stem cells to generate kidney organoids. Kidney organoids resemble the human kidney in vitro and can be applied in regenerative medicine and as developmental, toxicity, and disease models. Although current studies have shown great promise, challenges remain including the immaturity, limited reproducibility, and lack of perfusable vascular and collecting duct systems. This review gives an overview of our current understanding of nephrogenesis that enabled the generation of kidney organoids. Next, the potential applications of kidney organoids are discussed followed by future perspectives. This review proposes that advancement in kidney organoid research will be facilitated through our increasing knowledge on nephrogenesis and combining promising techniques such as organ-on-a-chip models.

2021 ◽  
Author(s):  
Xin Yu ◽  
Shan Jiang ◽  
Kailin Li ◽  
Xianzhen Yang ◽  
Zhihe Xu ◽  
...  

Abstract Background Human pluripotent stem cell (hPSCs)-derived kidney organoids may contribute to disease modeling and generation of kidney replacement tissues. However, realization of such applications requires the induction of hPSCs into functional mature organoids. One of the key questions for this process is whether a specific vascular system exists for nephrogenesis. Our previous study showed that implantation of hPSC-derived organoids below the kidney capsules of unilaterally nephrectomized immunodeficient mice for a short-term (2 weeks) resulted in the enlargement of organoids and production of vascular cells, although signs of maturation were lacking. Methods In this study, organoids are induced in vitro during 15 days and then sub-capsularly grafted into kidneys, we used the same unilaterally nephrectomized immunodeficient mice model to examine whether a medium -term (4 weeks) implantation could improve organoid maturation and vascularization, as evaluated by immunofluorescence and transmission electron microscopy(TEM). Results We demonstrate that after 2–4 weeks implantation, implanted renal organoids can form host-derived vascularization and mature in the absence of any exogenous vascular endothelial growth factor. Glomerular filtration barrier maturation was evidenced by glomerular basement membrane deposition, perforated glomerular endothelial cell development, as well as apical to basal podocyte polarization. A polarized monolayer epithelium and extensive brush border were also observed for tubular epithelial cells. Conclusions Our results indicate that the in vivo microenvironment is important for the maturation of human kidney organoids. Stromal expansion and a reduction of nephron structures were observed following longer-term (12 weeks) implantation,suggesting effects on off-target cells during the induction process. Accordingly, induction efficiency and transplantation models should be improved in the future.


2019 ◽  
Author(s):  
Jin Wook Hwang ◽  
Christophe Desterke ◽  
Olivier Féraud ◽  
Stephane Richard ◽  
Sophie Ferlicot ◽  
...  

SUMMARYHereditary cancers with cancer-predisposing mutations represent unique models of human oncogenesis as a driving oncogenic event is present in germline, exposing the healthy member of a family to the occurrence of cancer. The study of the secondary events in a tissue-specific manner is now possible by the induced pluripotent stem cell (iPSC) technology offering the possibility to generate an unlimited source of cells that can be induced to differentiate towards a tissue at risk of malignant transformation. We report here for the first time, the generation of a c-met-mutated iPSC lines from the somatic cells of a patient with type 1 papillary renal cell carcinoma (PRCC). We demonstrate the feasibility of kidney differentiation with iPSC-derived organoids expressing markers of kidney progenitors with presence of tight junctions and brush borders in tubular structures at transmission electron microscopy. Importantly, c-met-mutated kidney organoids expressed PRCC markers both in vitro and in vivo in NSG mice. Gene expression profiling of c-met-mutated iPSC-derived organoid structures showed striking molecular similarities with signatures found in a large cohort of PRCC patient samples and identified 11 common genes. Among these, BHLHE40 and KDM4C, well-known factors involved in PRCC pathogenesis, were expressed in c-met-mutated kidney organoids. This analysis applied to primary cancers with and without c-met mutation showed overexpression of the BHLHE40 and KDM4C only in the c-met-mutated PRCC tumors, as predicted by c-met-mutated organoid transcriptome. These data represent therefore the first proof of concept of the generation of “renal carcinoma in a dish” model using c-met-mutated iPSC-derived organoids, opening new perspectives for discovery of novel potentially predictive disease markers and novel drugs for future precision medicine strategies.


2018 ◽  
Vol 29 (6) ◽  
pp. 1690-1705 ◽  
Author(s):  
Dario R. Lemos ◽  
Michael McMurdo ◽  
Gamze Karaca ◽  
Julia Wilflingseder ◽  
Irina A. Leaf ◽  
...  

Background Kidney injury is characterized by persisting inflammation and fibrosis, yet mechanisms by which inflammatory signals drive fibrogenesis remain poorly defined.Methods RNA sequencing of fibrotic kidneys from patients with CKD identified a metabolic gene signature comprising loss of mitochondrial and oxidative phosphorylation gene expression with a concomitant increase in regulators and enzymes of glycolysis under the control of PGC1α and MYC transcription factors, respectively. We modeled this metabolic switch in vivo, in experimental murine models of kidney injury, and in vitro in human kidney stromal cells (SCs) and human kidney organoids.Results In mice, MYC and the target genes thereof became activated in resident SCs early after kidney injury, suggesting that acute innate immune signals regulate this transcriptional switch. In vitro, stimulation of purified human kidney SCs and human kidney organoids with IL-1β recapitulated the molecular events observed in vivo, inducing functional metabolic derangement characterized by increased MYC-dependent glycolysis, the latter proving necessary to drive proliferation and matrix production. MYC interacted directly with sequestosome 1/p62, which is involved in proteasomal degradation, and modulation of p62 expression caused inverse effects on MYC expression. IL-1β stimulated autophagy flux, causing degradation of p62 and accumulation of MYC. Inhibition of the IL-1R signal transducer kinase IRAK4 in vivo or inhibition of MYC in vivo as well as in human kidney organoids in vitro abrogated fibrosis and reduced tubular injury.Conclusions Our findings define a connection between IL-1β and metabolic switch in fibrosis initiation and progression and highlight IL-1β and MYC as potential therapeutic targets in tubulointerstitial diseases.


2021 ◽  
Vol 8 ◽  
Author(s):  
Weitao Zhang ◽  
Ruochen Qi ◽  
Tingting Li ◽  
Xuepeng Zhang ◽  
Yi Shi ◽  
...  

Sepsis-associated acute kidney injury (SA-AKI) is a life-threatening syndrome. Lipopolysaccharide (LPS) is a widely used inducer for modeling SA-AKI both in vivo and in vitro. However, due to the innate complexity of the kidney architecture, the mechanisms underlying the pathogenesis of SA-AKI, as well as those involved in LPS-induced kidney injury remain to be clarified. Kidney organoids derived from human pluripotent stem cells (hPSCs) act as a model of multiple types of kidney cells in vitro and eliminate potential confounders in vivo. In the current study, we established LPS-induced kidney injury models both in vivo and in human kidney organoids. Kidney function, pathological changes, and markers of oxidative stress were evaluated with/without the presence of methylprednisolone (MP) treatment both in vivo and in vitro. The extent of LPS-induced oxidative stress and apoptosis in kidney organoids was further investigated in vitro. LPS-induced acute kidney injury in mice, together with pathological changes and increased oxidative stress, as well as enhanced apoptosis in kidney cells were evaluated. These phenomena were ameliorated by MP treatment. Experiments in kidney organoids showed that the LPS-induced apoptotic effects occurred mainly in podocytes and proximal tubular cells. Our experiments demonstrated the efficacy of using kidney organoids as a solid platform to study LPS-induced kidney injury. LPS induced oxidative stress as well as apoptosis in kidney cells independently of changes in perfusion or immune cell infiltration. MP treatment partially alleviated LPS-induced injury by reducing kidney cell oxidative stress and apoptosis.


2016 ◽  
Vol 214 (2) ◽  
pp. 529-545 ◽  
Author(s):  
Junhua Lv ◽  
Lu Wang ◽  
Ya Gao ◽  
Yu-Qiang Ding ◽  
Feng Liu

The in vitro or ex vivo production of transplantable hematopoietic stem cells (HSCs) holds great promise for the treatment of hematological diseases in the clinic. However, HSCs have not been produced from either embryonic or induced pluripotent stem cells. In this study, we report that 5-hydroxytryptamine (5-HT; also called serotonin) can enhance the generation of hematopoietic stem and progenitor cells (HSPCs) in vitro and is essential for the survival of HSPCs in vivo during embryogenesis. In tryptophan hydroxylase 2–deficient embryos, a decrease in 5-HT synthesized in the aorta-gonad-mesonephros leads to apoptosis of nascent HSPCs. Mechanistically, 5-HT inhibits the AKT-Foxo1 signaling cascade to protect the earliest HSPCs in intraaortic hematopoietic clusters from excessive apoptosis. Collectively, our results reveal an unexpected role of 5-HT in HSPC development and suggest that 5-HT signaling may be a potential therapeutic target for promoting HSPC survival.


2021 ◽  
Vol 11 (6) ◽  
pp. 565
Author(s):  
Julia Dahlke ◽  
Juliane W. Schott ◽  
Philippe Vollmer Barbosa ◽  
Denise Klatt ◽  
Anton Selich ◽  
...  

Induced pluripotent stem cell (iPSC)-derived cell products hold great promise as a potential cell source in personalized medicine. As concerns about the potential risk of graft-related severe adverse events, such as tumor formation from residual pluripotent cells, currently restrict their applicability, we established an optimized tool for therapeutic intervention that allows drug-controlled, specific and selective ablation of either iPSCs or the whole graft through genetic safety switches. To identify the best working system, different tools for genetic iPSC modification, promoters to express safety switches and different safety switches were combined. Suicide effects were slightly stronger when the suicide gene was delivered through lentiviral (LV) vectors compared to integration into the AAVS1 locus through TALEN technology. An optimized HSV-thymidine kinase and the inducible Caspase 9 both mediated drug-induced, efficient in vitro elimination of transgene-positive iPSCs. Choice of promoter allowed selective elimination of distinct populations within the graft: the hOct4 short response element restricted transgene expression to iPSCs, while the CAGs promoter ubiquitously drove expression in iPSCs and their progeny. Remarkably, both safety switches were able to prevent in vivo teratoma development and even effectively eliminated established teratomas formed by LV CAGs-transgenic iPSCs. These optimized tools to increase safety provide an important step towards clinical application of iPSC-derived transplants.


2018 ◽  
Author(s):  
Sara E Howden ◽  
Jessica M Vanslambrouck ◽  
Sean B Wilson ◽  
Ker Sin Tan ◽  
Melissa H Little

AbstractWhile mammalian kidney morphogenesis has been well documented, human kidney development is poorly understood. Here we combine reprogramming, CRISPR/Cas9 gene-editing and organoid technologies to study human nephron lineage relationships in vitro. Early kidney organoids contained a SIX2+ population with a transcriptional profile akin to human nephron progenitors. Lineage-tracing using gene-edited induced pluripotent stem cell (iPSC) lines revealed that SIX2-expressing cells contribute to nephron formation but not to the putative collecting duct epithelium. However, Cre-mediated temporal induction of the SIX2+ lineage revealed a declining capacity for these cells to contribute to nephron formation over time. This suggests human kidney organoids, unlike the developing kidney in vivo, lack a nephron progenitor niche capable of both self-renewal and ongoing nephrogenesis. Nonetheless, human iPSC-derived kidney tissue maintains previously identified lineage relationships supporting the utility of pluripotent stem cell-derived kidney organoids for interrogating the molecular and cellular basis of early human development.


1998 ◽  
Vol 26 (4) ◽  
pp. 421-480
Author(s):  
Krys Bottrill

Recent developments in biomarkers relating to the interrelationship of diet, disease and health were surveyed. Most emphasis was placed on biomarkers of deleterious effects, since these are of greatest relevance to the subject of this review. The area of greatest activity was found to be that relating to biomarkers of mutagenic, genotoxic and carcinogenic effects. This is also one of the major areas of concern in considerations of the beneficial and deleterious effects of dietary components, and also the area in which regulatory testing requires studies of the longest duration. A degree of progress has also been made in the identification and development of biomarkers relating to certain classes of target organ toxicity. Biomarkers for other types of toxicity, such as immunotoxicity, neurotoxicity, reproductive toxicity and developmental toxicity, are less developed, and further investigation in these areas is required before a comprehensive biomarker strategy can be established. A criticism that recurs constantly in the biomarker literature is the lack of standardisation in the methods used, and the lack of reference standards for the purposes of validation and quality control. It is encouraging to note the growing acknowledgement of the need for validation of biomarkers and biomarker assays. Some validation studies have already been initiated. This review puts forward proposals for criteria to be used in biomarker validation. More discussion on this subject is required. It is concluded that the use of biomarkers can, in some cases, facilitate the implementation of the Three Rs with respect to the testing of food chemicals and studies on the effects of diet on health. The greatest potential is seen to be in the refinement of animal testing, in which biomarkers could serve as early and sensitive endpoints, in order to reduce the duration of the studies and also reduce the number of animals required. Biomarkers could also contribute to establishing a mechanistic basis for in vitro test systems and to facilitating their validation and acceptance. Finally, the increased information that could result from the incorporation of biomarker determinations into population studies could reduce the need for supplementary animal studies. This review makes a number of recommendations concerning the prioritisation of future activities on dietary biomarkers in relation to the Three Rs. It is emphasised, however, that further discussions will be required among toxicologists, epidemiologists and others researching the relationship between diet and health.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhou Fang ◽  
Junjian Chen ◽  
Ye Zhu ◽  
Guansong Hu ◽  
Haoqian Xin ◽  
...  

AbstractPeptides are widely used for surface modification to develop improved implants, such as cell adhesion RGD peptide and antimicrobial peptide (AMP). However, it is a daunting challenge to identify an optimized condition with the two peptides showing their intended activities and the parameters for reaching such a condition. Herein, we develop a high-throughput strategy, preparing titanium (Ti) surfaces with a gradient in peptide density by click reaction as a platform, to screen the positions with desired functions. Such positions are corresponding to optimized molecular parameters (peptide densities/ratios) and associated preparation parameters (reaction times/reactant concentrations). These parameters are then extracted to prepare nongradient mono- and dual-peptide functionalized Ti surfaces with desired biocompatibility or/and antimicrobial activity in vitro and in vivo. We also demonstrate this strategy could be extended to other materials. Here, we show that the high-throughput versatile strategy holds great promise for rational design and preparation of functional biomaterial surfaces.


Sign in / Sign up

Export Citation Format

Share Document