scholarly journals Research on Dual-Wavelength Absolute Ranging Technology Based on FMCW Laser Interference

Author(s):  
Bin Sun ◽  
Junfang Song

Abstract FMCW (Frequency-Modulated Continuous Wave) interferometer can achieve high-precision displacement measurement by phase discrimination of the interference signal. The phase needs to be superimposed continuously, so the optical path cannot be interrupted in the measurement process. To solve this problem, a new absolute ranging technology - decimal comparison method is proposed in the manuscript. According to the principle of FMCW interference, two DFB lasers with different central wavelengths are used to measure the same target. The sampled interference signal is processed by digital signal processing to calculate the integer and decimal of the synthetic wavelength period. The optical path difference of the target is calculated by the established mathematical model. The experimental results show that this method not only ensures the measurement accuracy, but also realizes the absolute measurement, and expands the application range of FMCW interferometry.

2018 ◽  
Vol 45 (6) ◽  
pp. 0607005
Author(s):  
王瑄 Wang Xuan ◽  
李中梁 Li Zhongliang ◽  
南楠 Nan Nan ◽  
步扬 Bu Yang ◽  
曾爱军 Zeng Aijun ◽  
...  

2015 ◽  
Vol 54 (22) ◽  
pp. 6661 ◽  
Author(s):  
Ningfang Song ◽  
Xiangxiang Lu ◽  
Wei Li ◽  
Yang Li ◽  
Yingying Wang ◽  
...  

Optik ◽  
2015 ◽  
Vol 126 (24) ◽  
pp. 5420-5422
Author(s):  
H.H. Ley ◽  
A. Yahaya ◽  
Y. Munajat

1963 ◽  
Vol 1 (6) ◽  
Author(s):  
Francis E. Washer ◽  
Walter R. Darling

Author(s):  
Vinod Singh ◽  
Gaurav Singhal ◽  
Prabal Talukdar

Abstract CFD based thermal design of a transverse flow optical cavity is carried out for 1 kW Nd3+ POCl3 liquid laser source to investigate temperature and velocity distribution in the optical pumping region of the cavity. Temperature gradient and turbulence both affect the refractive index of the liquid gain medium, which results in optical path difference, divergence and hence, poorer quality of the laser beam. The main purpose of this design is to achieve uniform flow and least temperature gradient in the optical pumping region so that the optical path difference can be minimized and a good beam quality can be achieved. CFD model has been developed for carrying out thermo-fluid simulations for this thermal system and based on these simulations, an optimum geometry of inlet ports along with their position from optical pumping region have been proposed. A user defined function (UDF) is incorporated for the input of spatially varying heat source term in each cell of the optical pumping region of the cavity. Variations in refractive index and optical path difference are estimated from the temperature data using another UDF. Simulation reveals that mass flow rate between 1.5 kg/s to 2.0 kg/s maintains the optical homogeneity of gain medium. Preliminary experiments have been carried out to demonstrate the effect of flow rate on the beam divergence and thereby exhibiting the importance of present simulation work.


2012 ◽  
Author(s):  
Ming-Ying Hsu ◽  
Yu-Chuan Lin ◽  
Chia-Yen Chan ◽  
Wei-Cheng Lin ◽  
Shenq-Tsong Chan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document