scholarly journals Bacterial inhibition of CD8+ T-cells mediated cell death promotes neuroinvasion and within-host persistence

Author(s):  
Marc Lecuit ◽  
Claire Maudet ◽  
Marouane Kheloufi ◽  
Sylvain Levallois ◽  
Julien Gaillard ◽  
...  

Abstract Central nervous system infections are amongst the most severe, yet the mechanisms by which pathogens access the brain remain poorly understood. The model microorganism Listeria monocytogenes (Lm) is a major foodborne pathogen that causes neurolisteriosis, one of the deadliest central nervous system infections. While immunosuppression is a well-established host risk factor for neurolisteriosis, little is known regarding the bacterial factors underlying Lm neuroinvasion. We have developed a clinically-relevant experimental model of neurolisteriosis, using hypervirulent neuroinvasive strains inoculated in a humanized mouse model of infection, and we show that the bacterial protein InlB protects infected monocytes from CD8+ T-cells Fas-mediated cell death, in a c-Met/PI3-kinase/FLIP-dependent manner. This blockade of anti-Lm specific cellular immune response lengthens infected monocytes lifespan, favoring Lm transfer from infected monocytes to the brain. The intracellular niche created by InlB-mediated cell-autonomous immunosuppression also promotes Lm fecal shedding, accounting for its selection as a Lm core virulence gene. Here, we have uncovered an unanticipated specific mechanism by which a bacterial pathogen confers to the cells it infects an increased lifespan by rendering them resistant to cell-mediated immunity. This promotes Lm within-host persistence and dissemination to the central nervous system, and transmission.

2020 ◽  
Author(s):  
Claire Maudet ◽  
Marouane Kheloufi ◽  
Sylvain Levallois ◽  
Julien Gaillard ◽  
Lei Huang ◽  
...  

AbstractCentral nervous system infections are amongst the most severe1,2, yet the mechanisms by which pathogens access the brain remain poorly understood. The model microorganism Listeria monocytogenes (Lm) is a major foodborne pathogen that causes neurolisteriosis, one of the deadliest central nervous system infections3,4. While immunosuppression is a well-established host risk factor for neurolisteriosis3,5, little is known regarding the bacterial factors underlying Lm neuroinvasion. We have developed a clinically-relevant experimental model of neurolisteriosis, using hypervirulent neuroinvasive strains6 inoculated in a humanized mouse model of infection7, and we show that the bacterial protein InlB protects infected monocytes from CD8+ T-cells Fas-mediated cell death, in a c-Met/PI3-kinase/FLIP-dependent manner. This blockade of anti-Lm specific cellular immune response lengthens infected monocytes lifespan, favoring Lm transfer from infected monocytes to the brain. The intracellular niche created by InlB-mediated cell-autonomous immunosuppression also promotes Lm fecal shedding, accounting for its selection as a Lm core virulence gene. Here, we have uncovered an unanticipated specific mechanism by which a bacterial pathogen confers to the cells it infects an increased lifespan by rendering them resistant to cell-mediated immunity. This promotes Lm within-host persistence and dissemination to the central nervous system, and transmission.


2015 ◽  
Vol 196 (1) ◽  
pp. 317-327 ◽  
Author(s):  
Maureen H. Richards ◽  
Srinivas D. Narasipura ◽  
Melanie S. Seaton ◽  
Victoria Lutgen ◽  
Lena Al-Harthi

Viruses ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 842 ◽  
Author(s):  
Taryn E. Mockus ◽  
Heather M. Ren ◽  
Shwetank ◽  
Aron E. Lukacher

CD8 T cells coordinate immune defenses against viral infections of the central nervous system (CNS). Virus-specific CD8 T cells infiltrate the CNS and differentiate into brain-resident memory CD8 T cells (CD8 bTRM). CD8 bTRM are characterized by a lack of recirculation and expression of phenotypes and transcriptomes distinct from other CD8 T cell memory subsets. CD8 bTRM have been shown to provide durable, autonomous protection against viral reinfection and the resurgence of latent viral infections. CD8 T cells have also been implicated in the development of neural damage following viral infection, which demonstrates that the infiltration of CD8 T cells into the brain can also be pathogenic. In this review, we will explore the residency and maintenance requirements for CD8 bTRM and discuss their roles in controlling viral infections of the brain.


2001 ◽  
Vol 167 (9) ◽  
pp. 5429-5438 ◽  
Author(s):  
Maria Cecilia Garibaldi Marcondes ◽  
E. M. E. Burudi ◽  
Salvador Huitron-Resendiz ◽  
Manuel Sanchez-Alavez ◽  
Debbie Watry ◽  
...  

2020 ◽  
Vol 205 (2) ◽  
pp. 359-368
Author(s):  
Alexander W. Boyden ◽  
Ashley A. Brate ◽  
Laura M. Stephens ◽  
Nitin J. Karandikar

Cells ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 2340
Author(s):  
Hannah E. Henson ◽  
Michael R. Taylor

The spliceosome consists of accessory proteins and small nuclear ribonucleoproteins (snRNPs) that remove introns from RNA. As splicing defects are associated with degenerative conditions, a better understanding of spliceosome formation and function is essential. We provide insight into the role of a spliceosome protein U4/U6.U5 tri-snRNP-associated protein 1, or Squamous cell carcinoma antigen recognized by T-cells (Sart1). Sart1 recruits the U4.U6/U5 tri-snRNP complex to nuclear RNA. The complex then associates with U1 and U2 snRNPs to form the spliceosome. A forward genetic screen identifying defects in choroid plexus development and whole-exome sequencing (WES) identified a point mutation in exon 12 of sart1 in Danio rerio (zebrafish). This mutation caused an up-regulation of sart1. Using RNA-Seq analysis, we identified additional upregulated genes, including those involved in apoptosis. We also observed increased activated caspase 3 in the brain and eye and down-regulation of vision-related genes. Although splicing occurs in numerous cells types, sart1 expression in zebrafish was restricted to the brain. By identifying sart1 expression in the brain and cell death within the central nervous system (CNS), we provide additional insights into the role of sart1 in specific tissues. We also characterized sart1’s involvement in cell death and vision-related pathways.


2004 ◽  
Vol 85 (8) ◽  
pp. 2379-2387 ◽  
Author(s):  
Ulrike Fassnacht ◽  
Andreas Ackermann ◽  
Peter Staeheli ◽  
Jürgen Hausmann

Dendritic cells (DCs) have been used successfully to induce CD8 T cells that control virus infections and growth of tumours. The efficacy of DC-mediated immunization for the control of neurotropic Borna disease virus (BDV) in mice was evaluated. Certain strains of mice only rarely develop spontaneous neurological disease, despite massive BDV replication in the brain. Resistance to disease is due to immunological ignorance toward BDV antigen in the central nervous system. Ignorance in mice can be broken by immunization with DCs coated with TELEISSI, a peptide derived from the N protein of BDV, which represents the immunodominant cytotoxic T lymphocyte epitope in H-2k mice. Immunization with TELEISSI-coated DCs further induced solid protective immunity against intravenous challenge with a recombinant vaccinia virus expressing BDV-N. Interestingly, however, this immunization scheme induced only moderate protection against intracerebral challenge with BDV, suggesting that immune memory raised against a shared antigen may be sufficient to control a peripherally replicating virus, but not a highly neurotropic virus that is able to avoid activation of T cells. This difference might be due to the lack of BDV-specific CD4 T cells and/or inefficient reactivation of DC-primed, BDV-specific CD8 T cells by the locally restricted BDV infection. Thus, a successful vaccine against persistent viruses with strong neurotropism should probably induce antiviral CD8 (as well as CD4) T-cell responses and should favour the accumulation of virus-specific memory T cells in cervical lymph nodes.


2009 ◽  
Vol 182 (10) ◽  
pp. 6360-6368 ◽  
Author(s):  
Toshiyuki Hayashi ◽  
Shigenori Nagai ◽  
Hideki Fujii ◽  
Yukiko Baba ◽  
Eiji Ikeda ◽  
...  

2002 ◽  
Vol 169 (4) ◽  
pp. 2010-2019 ◽  
Author(s):  
Lai-Yu Kwok ◽  
Hrvoje Miletic ◽  
Sonja Lütjen ◽  
Sabine Soltek ◽  
Martina Deckert ◽  
...  

2019 ◽  
Vol 11 (520) ◽  
pp. eaaz9757
Author(s):  
Gilbert Gallardo

C-type lectin receptors on myeloid cells regulate the activation and infiltration of T cells into the central nervous system in experimental autoimmune encephalomyelitis.


Sign in / Sign up

Export Citation Format

Share Document