scholarly journals The Feasibility and Utility of Hair Follicle Sampling To Measure FMRP and FMR1 mRNA in Children With or Without Fragile X Syndrome

Author(s):  
Isha Jalnapurkar ◽  
Jean A. Frazier ◽  
Mark Roth ◽  
David M. Cochran ◽  
Ann Foley ◽  
...  

Abstract Background: Fragile X syndrome (FXS) is the most common cause inherited cause of intellectual disability in males and the most common single gene cause of autism. This X-linked disorder is caused by an expansion of a trinucleotide CGG repeat (>200 base pairs) on the promotor region of the fragile X mental retardation 1 gene (FMR1). This leads to the deficiency or absence of the encoded protein, Fragile X mental retardation protein (FMRP). FMRP has a central role in the translation of mRNAs involved in synaptic connections and plasticity. Recent studies have demonstrated the benefit of therapeutics focused on reactivation of the FMR1 locus towards improving key clinical phenotypes via restoration of FMRP and ultimately disease modification. A key step in future studies directed towards this effort is the establishment of proof of concept (POC) for FMRP reactivation in individuals with FXS. For this it is key to determine the feasibility of repeated collection of tissues or fluids to measure FMR1 and FMRP. Methods: Individuals, ages 3 to 22 years of age, with FXS and those who were typically developing participated in this single-site pilot clinical biomarker study. The repeated collection of hair follicles was compared with the collection of blood and buccal swabs for detection of FMR1 mRNA and FMRP and related molecules. Results: There were n = 15 participants, of whom 10 had a diagnosis of FXS (7.0 ± 3.56 years) and 5 were typically developing (8.2 ± 2.77 years). Absolute levels of FMRP and FMR1 mRNA were substantially higher in healthy participants compared to full mutation and mosaic FXS participants, and lowest in the FXS boys. Measurement of FMR1 and FMRP levels by any method did not show any notable variation by collection location at home versus office across the various sample collection methodologies of hair follicle, blood sample, and buccal swab. Conclusion: Findings demonstrated that repeated sampling of hair follicles in individuals with FXS, in both, home and office settings, is feasible, repeatable, and can be used for measurement of FMR1 and FMRP in longitudinal studies.

Diagnostics ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1780
Author(s):  
Mark Roth ◽  
Lucienne Ronco ◽  
Diego Cadavid ◽  
Blythe Durbin-Johnson ◽  
Randi J. Hagerman ◽  
...  

Fragile X syndrome (FXS) is the most common form of inherited intellectual disability. FXS is an X-linked, neurodevelopmental disorder caused by a CGG trinucleotide repeat expansion in the 5′ untranslated region (UTR) of the Fragile X Mental Retardation gene, FMR1. Greater than 200 CGG repeats results in epigenetic silencing of the gene leading to the deficiency or absence of Fragile X mental retardation protein (FMRP). The loss of FMRP is considered the root cause of FXS. The relationship between neurological function and FMRP expression in peripheral blood mononuclear cells (PBMCs) has not been well established. Assays to detect and measure FMR1 and FMRP have been described; however, none are sufficiently sensitive, precise, or quantitative to properly characterize the relationships between cognitive ability and CGG repeat number, FMR1 mRNA expression, or FMRP expression measured in PBMCs. To address these limitations, two novel immunoassays were developed and optimized, an electro-chemiluminescence immunoassay and a multiparameter flow cytometry assay. Both assays were performed on PMBCs isolated from 27 study participants with FMR1 CGG repeats ranging from normal to full mutation. After correcting for methylation, a significant positive correlation between CGG repeat number and FMR1 mRNA expression levels and a significant negative correlation between FMRP levels and CGG repeat expansion was observed. Importantly, a high positive correlation was observed between intellectual quotient (IQ) and FMRP expression measured in PBMCs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Juan Pozo-Palacios ◽  
Arianne Llamos-Paneque ◽  
Christian Rivas ◽  
Emily Onofre ◽  
Andrea López-Cáceres ◽  
...  

Fragile X syndrome (FXS) is the most common cause of hereditary intellectual disability and the second most common cause of intellectual disability of genetic etiology. This complex neurodevelopmental disorder is caused by an alteration in the CGG trinucleotide expansion in fragile X mental retardation gene 1 (FMR1) leading to gene silencing and the subsequent loss of its product: fragile X mental retardation protein 1 (FMRP). Molecular diagnosis is based on polymerase chain reaction (PCR) screening followed by Southern blotting (SB) or Triplet primer-PCR (TP-PCR) to determine the number of CGG repeats in the FMR1 gene. We performed, for the first time, screening in 247 Ecuadorian male individuals with clinical criteria to discard FXS. Analysis was carried out by the Genetics Service of the Hospital de Especialidades No. 1 de las Fuerzas Armadas (HE-1), Ecuador. The analysis was performed using endpoint PCR for CGG fragment expansion analysis of the FMR1 gene. Twenty-two affected males were identified as potentially carrying the full mutation in FMR1 and thus diagnosed with FXS that is 8.1% of the sample studied. The average age at diagnosis of the positive cases was 13 years of age, with most cases from the geographical area of Pichincha (63.63%). We confirmed the familial nature of the disease in four cases. The range of CGG variation in the population was 12–43 and followed a modal distribution of 27 repeats. Our results were similar to those reported in the literature; however, since it was not possible to differentiate between premutation and mutation cases, we can only establish a molecular screening approach to identify an expanded CGG repeat, which makes it necessary to generate national strategies to optimize molecular tests and establish proper protocols for the diagnosis, management, and follow-up of patients, families, and communities at risk of presenting FXS.


2008 ◽  
Vol 113 (6) ◽  
pp. 427-438 ◽  
Author(s):  
Susan W. Harris ◽  
David Hessl ◽  
Beth Goodlin-Jones ◽  
Jessica Ferranti ◽  
Susan Bacalman ◽  
...  

Abstract Autism, which is common in individuals with fragile X syndrome, is often difficult to diagnose. We compared the diagnostic classifications of two measures for autism diagnosis, the ADOS and the ADI-R, in addition to the DSM-IV-TR in 63 males with this syndrome. Overall, 30% of the subjects met criteria for autistic disorder and 30% met criteria for PDD-NOS. The classifications on the ADOS and DSM-IV-TR were most similar, whereas the ADI-R classified subjects as autistic much more frequently. We further investigated the relationship of both FMRP and FMR1 mRNA to symptoms of autism in this cohort and found no significant relationship between the measures of autism and molecular features, including FMRP, FMR1 mRNA, and CGG repeat number.


2018 ◽  
Vol 4 (4) ◽  
pp. e246 ◽  
Author(s):  
Padmaja Vittal ◽  
Shrikant Pandya ◽  
Kevin Sharp ◽  
Elizabeth Berry-Kravis ◽  
Lili Zhou ◽  
...  

ObjectiveTo explore the association of a splice variant of theantisense fragile X mental retardation 1(ASFMR1) gene, loss offragile X mental retardation 1(FMR1) AGG interspersions andFMR1CGG repeat size with manifestation, and severity of clinical symptoms of fragile X-associated tremor/ataxia syndrome (FXTAS).MethodsPremutation carriers (PMCs) with FXTAS, without FXTAS, and normal controls (NCs) had a neurologic evaluation and collection of skin and blood samples. Expression ofASFMR1transcript/splice variant 2 (ASFMR1-TV2), nonsplicedASFMR1, totalASFMR1, andFMR1messenger RNA were quantified and compared using analysis of variance. Least absolute shrinkage and selection operator (LASSO) logistic regression and receiver operating characteristic analyses were performed.ResultsPremutation men and women both with and without FXTAS had higherASFMR1-TV2 levels compared with NC men and women (n = 135,135,p< 0.0001), andASFMR1-TV2 had good discriminating power for FXTAS compared with NCs but not for FXTAS from PMC. After adjusting for age, loss of AGG, larger CGG repeat size (in men), and elevatedASFMR1-TV2 level (in women) were strongly associated with FXTAS compared with NC and PMC (combined).ConclusionsThis study found elevated levels ofASFMR1-TV2and loss of AGG interruptions in both men and women with FXTAS. Future studies will be needed to determine whether these variables can provide useful diagnostic or predictive information.


PEDIATRICS ◽  
1996 ◽  
Vol 97 (1) ◽  
pp. 122-126
Author(s):  
Randi J. Hagerman ◽  
Louise W. Staley ◽  
Rebecca O'Conner ◽  
Kellie Lugenbeel ◽  
David Nelson ◽  
...  

There is a broad spectrum of clinical involvement in both boys and girls affected by fragile X syndrome. Although this disorder is best known as the most common inherited cause of mental retardation, it also can manifest as learning disabilities in individuals with IQs in the broad range of normal. Boys are usually retarded, and girls are usually learning disabled with fragile X syndrome.1 The responsible gene, fragile X mental retardation 1 (FMR1), was isolated in 1991, and the mutation was found to involve expansion of a trinucleotide (CGG) repeat segment. Individuals with fragile X syndrome have a CGG expansion of more than 200 repeats associated with hypermethylation of both the expansion and an adjacent CpG island (full mutation).2,3


2007 ◽  
Vol 7 ◽  
pp. 146-154 ◽  
Author(s):  
Abrar Qurashi ◽  
Shuang Chang ◽  
Peng Jin

Deficits in cognitive functions lead to mental retardation (MR). Understanding the genetic basis of inherited MR has provided insights into the pathogenesis of MR. Fragile X syndrome is one of the most common forms of inherited MR, caused by the loss of functional Fragile X Mental Retardation Protein (FMRP).MicroRNAs (miRNAs) are endogenous, single-stranded RNAs between 18 and 25 nucleotides in length, which have been implicated in diversified biological pathways. Recent studies have linked the miRNA pathway to fragile X syndrome. Here we review the role of the miRNA pathway in fragile X syndrome and discuss its implication in MR in general.


Endocrinology ◽  
1998 ◽  
Vol 139 (1) ◽  
pp. 156-162 ◽  
Author(s):  
Karin E. Slegtenhorst-Eegdeman ◽  
Dirk G. de Rooij ◽  
Miriam Verhoef-Post ◽  
Henk J. G. van de Kant ◽  
Cathy E. Bakker ◽  
...  

Abstract The fragile X syndrome is the most frequent hereditary form of mental retardation. This X-linked disorder is, in most cases, caused by an unstable and expanding trinucleotide CGG repeat located in the 5′-untranslated region of the gene involved, the fragile X mental retardation 1 (FMR1) gene. Expansion of the CGG repeat to a length of more than 200 trinucleotides results in silencing of the FMR1 gene promoter and, thus, in an inactive gene. The clinical features of male fragile X patients include mental retardation, autistiform behavior, and characteristic facial features. In addition, macroorchidism is observed. To study the role of Sertoli cell proliferation and FSH signal transduction in the occurrence of macroorchidism in fragile X males, we made use of an animal model for the fragile X syndrome, an Fmr1 knockout mouse. The results indicate that in male Fmr1 knockout mice, the rate of Sertoli cell proliferation is increased from embryonic day 12 to 15 days postnatally. The onset and length of the period of Sertoli cell proliferation were not changed compared with those in the control males. Serum levels of FSH, FSH receptor messenger RNA expression, and short term effects of FSH on Sertoli cell function, as measured by down-regulation of FSH receptor messenger RNA, were not changed. We conclude that macroorchidism in Fmr1 knockout male mice is caused by an increased rate of Sertoli cell proliferation. This increase does not appear to be the result of a major change in FSH signal transduction in Fmr1 knockout mice.


Sign in / Sign up

Export Citation Format

Share Document