scholarly journals Determination of the Area of Energy-efficient Working Equipment Position and Effective Digging Radius of Hydraulic Excavators in Open-pit Mining

Author(s):  
Sergey Markov ◽  
Maxim Tyulenev

Abstract Since the end of the last century, a significant number of hydraulic excavators have arrived on Russian quarries. Most of these excavators are equipped with backhoe operating equipment. The widespread use of such excavators in open-pit mining proves their exceptional efficiency. However, at the same time there is no clear understanding of the conditions under which a hydraulic excavator will be most effective: a theory of the face block of hydraulic shovels has not yet been developed. The available scientific studies are limited to determining the rational height of the excavation layer for efficient operation. If to take the quality of preparation of rock mass and the scheme of its loading into dump trucks as external parameters, i.e. not depending on the features of excavator design, then the position of its working equipment relative to the rock block has a decisive influence on operation of the hydraulic drive and fuel consumption. This is due to the changing value of digging force at various points of the bucket teeth position in the range of their possible positions at constant power of the hydraulic drive. Thus, application of optimal position of hydraulic excavator working equipment elements (bucket, arm, and boom) relative to the rotary platform and the rock massive during the digging cycle allows both to reduce fuel consumption and to increase the digging force. The application of the developed methodology is promising in terms of improving the energy efficiency of both individual excavation and loading units and the enterprise as a whole.

2020 ◽  
Vol 59 (3) ◽  
pp. 131-139
Author(s):  
Nikolay Maksimovich SUSLOV ◽  
◽  
Stanislav Alekseevich CHERNUKHIN ◽  
Dmitriy Nikolaevich SUSLOV ◽  
◽  
...  

Relevance of the work. Reducing the cost of mining in the course of open pit mining has always been considered one of the important tasks in the mining industry; it allows to reduce the cost of the extracted ore. When developing quarries, the most costly work, in which there is no direct mining, is the overburden of waste rocks. The method of stripping operations is one of the most efficient and highly productive, which uses a non-transport technology with a walking dragline excavator. Moving such powerful machines is energy-intensive and affects the efficiency of the machine as a whole, therefore, the modernization of the walking mechanism will increase the energy efficiency of the excavator and ultimately reduce the cost of mining. The most common mechanism for moving such machines is a hydraulically driven three-bearing mechanism. This paper describes the proposed modernization of such a walking mechanism, which makes it possible to get rid of two main disadvantages, namely, the lack of energy recuperation of the lifted machine along the path and the dragging of the base edge against the ground, which creates additional resistance to movement. The installation of hydraulic accumulators in the hydraulic system of the drive of the movement of the machine will allow accumulating the energy of the machine raised above the ground when walking, and the introduction of an additional support shoe into the support base of the machine will get rid of dragging the base. In general, the presented modernization of the mechanism will reduce the energy consumption of moving a dragline excavator with a three-bearing walking mechanism with a hydraulic drive and, ultimately, reduce the cost of mining. Purpose of the work: to improve the efficiency of the dragline as a whole by increasing the energy efficiency of its movement. Objectives: consider design changes to reduce the energy cost of moving the dragline. Results. A variant of adding a support shoe into the walking mechanism is considered, which makes it possible to eliminate the friction of the base against the rock along the path by completely separating the base from the ground. Calculations of energy consumption of mechanisms for different types of draglines with the existing and proposed mechanism are carried out. Conclusions, application of results. The calculations given in this paper allow us to conclude about the effectiveness of the changes made to the design of the walking mechanism. The proposed mechanism allows you to significantly reduce the cost of moving and get rid of the disadvantages inherent in the existing mechanism.


2018 ◽  
Vol 224 ◽  
pp. 02046 ◽  
Author(s):  
Viktor Shestakov ◽  
Pavel Babenkov ◽  
Sergey Horoshavin

The urgency of the work is due to the need for design departments involved in the design of hydraulic excavators in techniques. Allowing to reduce the weight of excavators while providing at the same time sufficient reliability. The purpose of the work: development of a technique for application in the design of excavators of calculation modules based on the use of finite elements. Research methodology: modeling of working equipment. For a hydraulic excavator with a “direct” shovel working equipment, a mathematical model for calculating effort, an algorithm and a program in an algorithmic language have been developed, which allow to determine the working area of the excavator, possible digging forces, and efforts in the elements of the working equipment. To calculate stresses in the design of the working equipment, two modeling options are proposed: the models for the Strucrure 3D computational module are compiled separately for the bucket of the handle and the boom, the interaction of the models is carried out by efforts that are determined by the specified digging forces; a complete model of all the working equipment for the calculation module is compiled, without the need to calculate the loads between the elements, the calculation is carried out directly by the digging force. For the first variant formulas of calculation of efforts in elements of the working equipment are resulted. For the second variant, it is suggested to use a plate-rod model, and recommendations are given for the implementation of the relationships between the boom, the handle and the bucket. The results of stress calculations for the working equipment are presented.


2020 ◽  
Vol 174 ◽  
pp. 01010
Author(s):  
Oleg Litvin ◽  
Yaroslav Litvin

Hydraulic excavators currently used at open pit mines, in particular backhoes, are more maneuverable, mobile and have more digging capabilities than rope shovels. This makes them suitable for a variety of conditions: top and bottom digging, loading lower, higher and at the standing level. The variants of mutual arrangement of the excavator and the dump truck, respectively, affect the duration of the excavator cycle, which, in turn, directly affects the productivity of the excavator. This article evaluates changes in the productivity of an excavator, depending on its angle of rotation and options for digging and loading. It is determined that the smaller the swing angle of an excavator, the greater its impact on productivity. Based on the executed calculations relative decrease in productivity (in percent from the most optimum variant) is established. Results of work can be used at planning of open pit mining for the purpose of definition, for example, speed of mining front movement at change of parameters of an excavator face and a type of a digging and loading.


2019 ◽  
Vol 4 (1) ◽  
pp. 4-15
Author(s):  
B. R. Raimzhanov ◽  
A. R. Khasanov ◽  
R. R. Vakhitov

The paper presents process layouts for excavation of zones near pit envelope based on the analysis of findings of the ore loss study in case of open-pit mining, as well as the results of field measurements in the quarry faces in Muruntau and Myutenbai open pits. In the course of the field measurements, parameters of the quarry faces at Muruntau and Myutenbai open pits were determined under the following working conditions of an excavator: at full bench with shotpile height of 19–21 m; at full bench with shotpile height of 12–14 m at excavation of the “blast cap”; at heading face and taking ramp material. In all the above-listed quarry faces, the slope angles and the ore mass shotpile height when excavating were measured. Besides, the used excavator type (dragline or hydraulic) was taken into account. For each face, 2–3 measurements were performed, and the average slope angle at the ore mass excavation was determined for each type of excavator. At the next stage of the field measurements, the bench height in the rock mass and the shotpile parameters were measured before and after blasting operations under the following arrangements for preparing the rock mass for excavation: a) under normal conditions, when the ore mass blasting is performed for the selected face or relieving wall of the required thickness; b) in compression with a “blast cap” formation; c) in the marginal parts of the bench. Based on the results of the actual bench height and the blasted rock shotpile parameter field measurements, the following conclusions were drawn: a) the actual slope angles of the quarry faces were 49° when excavating the “blast cap” using dragline excavators, and 53° when excavating the ore mass at full bench regardless of the excavator type used; the slope angles of 49° for the dragline excavator and 53° for the hydraulic excavators were taken for further calculations; b) the width of the marginal (near-envelope) zone, where losses and dilution of balance ore are generated, increased from 7 to 13.0 m (at 49°) and from 7 to 11.3 m (at 53°); as a result, the areas of loss and dilution triangles have increased; c) when blasting in compression conditions, in the upper part of the shotpile, intense mixing of the involved rock and all ore grades occurs, therefore, when excavating the “blast cap”, bulk ore mass mining is only possible. The lower part of the blasted bench preserves the geological structure of the rock mass to a greater degree and can be selectively excavated with separation of the ore mass by grade; d) when blasting the rock mass, to maintain the required pulse direction and the blasting sequence, barren boreholes are included in the breaking outline, which increase the balance ore dilution, and structural dilution arises, which should be taken into account when drawing up the "Methods for determining, limitation and accounting for ore losses and dilution in the course of the Muruntau and Myutenbai (the fifth stage) open-pit mining"; e) when compiling the "Methods ...", the option of dividing a bench of 15 m high into two sub-benches of 7.5 m should be considered.


Author(s):  
Gomolemo Tadubana ◽  
Boyce Sigweni ◽  
Raymond Suglo

The shovel-truck system is commonly used in open-pit mining operations. Truck haulage cost constitutes about 26% of open-pit mining costs as the trucks are mostly powered by diesel whose cost is escalating annually. Therefore, reducing fuel consumption could lead to a significant decrease in overall mining costs. Various methods have been proposed to improve fuel efficiency in open-pit mines. Case-based reasoning (CBR) can be used to estimate fuel consumption by haulage trucks. In this work, CBR methods namely case-based reasoning using forward sequential selection (CBR-FSS), traditional CBR, and Naïve techniques were used to predict fuel consumption by trucks operating at Orapa Mine. The results show that the CBR method can be used to predict fuel consumption by trucks in open-pit mines; the predicted values of fuel consumption using the CBR-FSS technique gave much lower absolute residual values, higher standardised accuracy values, and effect sizes than those of other prediction techniques on all the datasets used. The system will enable mine planners to know the fuel consumed per trip and allow them to take mitigation measures on trucks with high fuel consumption.


2012 ◽  
Vol 6 (4) ◽  
pp. 516-520 ◽  
Author(s):  
Hiroaki Inoue ◽  
◽  
Hiroshi Yoshida ◽  

More than 90% of the CO2 emissions in the lifecycle of machinery, from production to scrapping, are caused by its fuel consumption at the time of operation, and any decrease in fuel consumption is directly linked to a decrease in greenhouse gas emissions. For this reason, we have developed a hybrid systemfor a hydraulic excavator – construction machinery with the highest number in use in Japan. This system uses an electric motor for the revolving upper structure and regenerates, using a capacitor, energy hitherto released as heat when braking. Sales of the 20 ton class hydraulic excavator PC200-8E0 started in 2008 [1]. We confirmed an average decrease of 25% in fuel consumption using data from an on-board vehicle management system. This corresponds to a 20 ton decrease in CO2 emissions per vehicle per year. For further popularization of hybrid excavators, we updated the hybrid components in late 2010 and carried out a full model change. This is presented below in greater detail.


2020 ◽  
Vol 177 ◽  
pp. 03016
Author(s):  
Nikolay Suslov ◽  
Stanislav Chernukhin

The article discusses the mechanisms of walking used on dragline excavators. The disadvantages of each mechanism are identified and based on this, the most promising movement mechanism is selected – a three-legged walking mechanism with a hydraulic drive. For this mechanism, the main disadvantages are also identified. The following is a technical solution that allows you to save this mechanism from the main drawback – the need to raise the center of mass of the excavator to a significant height to ensure the maximum step value. The technical solution includes the presence of a flat hydrostatic support that allows to increase the efficiency of the mechanism in open-pit mining operations. The calculation of oil consumption through a flat hydrostatic support in the conditions of its use on quarry soils with different bearing capacity is made.


Author(s):  
B. Purewtogtoh ◽  
B. Byambadagwa ◽  
B. Enchuluun

The intensive development of an open-pit mining method is usually accompanied by an increase in the depth of quarries and the complexity of other mining conditions, in which the role of quarry vehicles increases significantly. In this regard, the study and justification of rational parameters of operation of technological vehicles is very relevant and has important practical significance. New methods for determining fuel consumption have been developed based on the regularities established as a result of the study of the dependence on mining and technical conditions and physical load of the dump truck on this section of roads.


DYNA ◽  
2020 ◽  
Vol 87 (214) ◽  
pp. 93-99
Author(s):  
Mylena Karen Vílchez Torres ◽  
Jimy Frank Oblitas Cruz ◽  
Wilson Castro Silupu

Equipment-intensive industries must manage critical components due to their impact on the availability and high inventory carrying costs. In this context, this study seeks to assess mean times between interventions (MTBI) and mean times between failures (MTBF) to determine optimal replacement times for critical repairable components used in six EX5500 hydraulic excavators operating at an open-pit mining site. For these purposes, the authors compared a base policy using the MTBF values provided by the equipment manufacturer, against the proposed policy using the MTBI values obtained from equipment intervention records. The results from the study, revealed that the MTBI policy was able to streamline the replacement times for critical repairable components, thus, generating a cost optimization model at a higher level of reliability


Sign in / Sign up

Export Citation Format

Share Document