scholarly journals Representation of Land-Atmosphere Coupling Processes Over Africa in CMIP6 Models

Author(s):  
Anthony Mwanthi ◽  
Joseph Mutemi ◽  
Ellen Dyer ◽  
Rachel James ◽  
Franklin Opijah ◽  
...  

Abstract Climate models are useful tools that aid in short to long term prediction of the evolution of climate. In this study we assess how CMIP6 models represent coupling between processes over the land and atmosphere, based on terrestrial and atmospheric indices, to show the nature and strength of the coupling relative to the ERA5 datasets over Africa, with a particular focus on the March-May season. Characterization of the annual cycle indicates that model biases are highest during the peak of the rainfall season, and least during the dry season, while soil moisture biases correspond with rainfall amounts. Models show appreciable sensitivity to regional characteristics; there was model consensus in representing East Africa as a limited soil moisture regime, while major differences were noted in the wet regime over Central Africa. Most CMIP6 models tend to over-estimate the strength of the terrestrial and atmospheric pathways over East and Southern Africa. Inter-model differences in coupling indices could be traced to their inter-annual variability rather than to the mean biases of the variables considered. These results are good indicators towards scientific advancement of land surface schemes in the next generation of climate models for better applications in Africa.

2002 ◽  
Vol 66 (1) ◽  
pp. 202 ◽  
Author(s):  
M. Tejedor ◽  
C. C. Jiménez ◽  
F. Díaz

Urban Science ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 27
Author(s):  
Lahouari Bounoua ◽  
Kurtis Thome ◽  
Joseph Nigro

Urbanization is a complex land transformation not explicitly resolved within large-scale climate models. Long-term timeseries of high-resolution satellite data are essential to characterize urbanization within land surface models and to assess its contribution to surface temperature changes. The potential for additional surface warming from urbanization-induced land use change is investigated and decoupled from that due to change in climate over the continental US using a decadal timescale. We show that, aggregated over the US, the summer mean urban-induced surface temperature increased by 0.15 °C, with a warming of 0.24 °C in cities built in vegetated areas and a cooling of 0.25 °C in cities built in non-vegetated arid areas. This temperature change is comparable in magnitude to the 0.13 °C/decade global warming trend observed over the last 50 years caused by increased CO2. We also show that the effect of urban-induced change on surface temperature is felt above and beyond that of the CO2 effect. Our results suggest that climate mitigation policies must consider urbanization feedback to put a limit on the worldwide mean temperature increase.


2021 ◽  
Vol 13 (4) ◽  
pp. 680
Author(s):  
Lei Wang ◽  
Wen Zhuo ◽  
Zhifang Pei ◽  
Xingyuan Tong ◽  
Wei Han ◽  
...  

Massive desert locust swarms have been threatening and devouring natural vegetation and agricultural crops in East Africa and West Asia since 2019, and the event developed into a rare and globally concerning locust upsurge in early 2020. The breeding, maturation, concentration and migration of locusts rely on appropriate environmental factors, mainly precipitation, temperature, vegetation coverage and land-surface soil moisture. Remotely sensed images and long-term meteorological observations across the desert locust invasion area were analyzed to explore the complex drivers, vegetation losses and growing trends during the locust upsurge in this study. The results revealed that (1) the intense precipitation events in the Arabian Peninsula during 2018 provided suitable soil moisture and lush vegetation, thus promoting locust breeding, multiplication and gregarization; (2) the regions affected by the heavy rainfall in 2019 shifted from the Arabian Peninsula to West Asia and Northeast Africa, thus driving the vast locust swarms migrating into those regions and causing enormous vegetation loss; (3) the soil moisture and NDVI anomalies corresponded well with the locust swarm movements; and (4) there was a low chance the eastwardly migrating locust swarms would fly into the Indochina Peninsula and Southwest China.


Geoderma ◽  
1975 ◽  
Vol 14 (3) ◽  
pp. 207-221 ◽  
Author(s):  
E.De Jong ◽  
K.B. MacDonald

Sign in / Sign up

Export Citation Format

Share Document