scholarly journals Exploration of the Species-specific Dna Markers Based on the Complete Chloroplast Genome for Discriminating Curcuma Comosa Roxb. From Curcuma Latifolia Roscoe and Other Related Species

Author(s):  
Bussarin Wachananawat ◽  
Bobby Lim‐Ho Kong ◽  
Pang‐Chui Shaw ◽  
Bhanubong Bongcheewin ◽  
Sunisa Sangvirotjanapat ◽  
...  

Abstract Members of the Curcuma genus are among the most commonly used rhizomatous herbs worldwide. There are two species of Curcuma referred to as “Wan Chak Motluk” in Thai, C. comosa Roxb. and C. latifolia Roscoe, and their herbal materials are often confused. C. comosa is widely used as a traditional herbal remedy for its phytoestrogenic activity, but its morphology is highly similar to that of C. latifolia, which contains a compound that causes hepatotoxicity. In this study, the complete chloroplast (cp) genomes of these species were determined for the first time using Illumina sequencing. Our results showed that their cp genomes were 162,272 bp (C. comosa) and 162,289 bp (C. latifolia) in length. A total of 133 unique genes were identified, including 87 protein-coding genes, 38 tRNA genes and 8 rRNA genes. Comparative analyses with other species of Curcuma indicated high similarity in gene content and structural organization. The analyses also reveal variable hotspots in the genomes at ndhA, trnT-trnL, and ndhC-trnV that can serve as species-specific nucleotide barcodes. Indeed, mislabeling of these two species among samples sold at market was detected using these species-specific markers, indicating that cp genomes can provide more information for better elucidating and improving discriminatory power for species authentication.

Plants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1354
Author(s):  
Slimane Khayi ◽  
Fatima Gaboun ◽  
Stacy Pirro ◽  
Tatiana Tatusova ◽  
Abdelhamid El Mousadik ◽  
...  

Argania spinosa (Sapotaceae), an important endemic Moroccan oil tree, is a primary source of argan oil, which has numerous dietary and medicinal proprieties. The plant species occupies the mid-western part of Morocco and provides great environmental and socioeconomic benefits. The complete chloroplast (cp) genome of A. spinosa was sequenced, assembled, and analyzed in comparison with those of two Sapotaceae members. The A. spinosa cp genome is 158,848 bp long, with an average GC content of 36.8%. The cp genome exhibits a typical quadripartite and circular structure consisting of a pair of inverted regions (IR) of 25,945 bp in length separating small single-copy (SSC) and large single-copy (LSC) regions of 18,591 and 88,367 bp, respectively. The annotation of A. spinosa cp genome predicted 130 genes, including 85 protein-coding genes (CDS), 8 ribosomal RNA (rRNA) genes, and 37 transfer RNA (tRNA) genes. A total of 44 long repeats and 88 simple sequence repeats (SSR) divided into mononucleotides (76), dinucleotides (7), trinucleotides (3), tetranucleotides (1), and hexanucleotides (1) were identified in the A. spinosa cp genome. Phylogenetic analyses using the maximum likelihood (ML) method were performed based on 69 protein-coding genes from 11 species of Ericales. The results confirmed the close position of A. spinosa to the Sideroxylon genus, supporting the revisiting of its taxonomic status. The complete chloroplast genome sequence will be valuable for further studies on the conservation and breeding of this medicinally and culinary important species and also contribute to clarifying the phylogenetic position of the species within Sapotaceae.


2020 ◽  
Author(s):  
Aziz Ebrahimi ◽  
Jennifer D. Antonides ◽  
Cornelia C. Pinchot ◽  
James M. Slavicek ◽  
Charles E. Flower ◽  
...  

ABSTRACTAmerican elm, Ulmus americana L., was cultivated widely in USA and Canada as a landscape tree, but the genome of this important species is poorly characterized. For the first time, we describe the sequencing and assembly of the chloroplast genomes of two American elm genotypes (RV16 and Am57845). The complete chloroplast genome of U. americana ranged from 158,935-158,993 bp. The genome contains 127 genes, including 85 protein-coding genes, 34 tRNA genes and 8 rRNA genes. Between the two American elm chloroplasts we sequenced, we identified 240 sequence variants (SNPs and indels). To evaluate the phylogeny of American elm, we compared the chloroplast genomes of two American elms along with seven Asian elm species and twelve other chloroplast genomes available through the NCBI database. As expected, Ulmus was closely related to Morus and Cannabis, as all three genera are assigned to the Urticales. Comparison of American elm with Asian elms revealed that trnH was absent from the chloroplast of American elm but not most Asian elms; conversely, petB, petD, psbL, trnK, and rps16 are present in the American elm but absent from all Asian elms. The complete chloroplast genome of U. americana will provide useful genetic resources for characterizing the genetic diversity of U. americana and potentially help to conserve natural populations of American elm.


2021 ◽  
Vol 104 (4) ◽  
pp. 003685042110599
Author(s):  
Dhafer Alzahrani ◽  
Enas Albokhari ◽  
Abidina Abba ◽  
Samaila Yaradua

Caylusea hexagyna and Ochradenus baccatus are two species in the Resedaceae family. In this study, we analysed the complete plastid genomes of these two species using high-throughput sequencing technology and compared their genomic data. The length of the plastid genome of C. hexagyna was 154,390 bp while that of O. baccatus was 153,380 bp. The lengths of the inverted repeats (IR) regions were 26,526 bp and 26,558 bp, those of the large single copy (LSC) regions were 83,870 bp and 83,023 bp; and those of the small single copy (SSC) regions were 17,468 bp and 17,241 bp in C. hexagyna and O. baccatus, respectively. Both genomes consisted of 113 genes: 79 protein-coding genes, 30 tRNA genes and 4 rRNA genes. Repeat analysis showed that the plastid genome included all types of repeats, with more frequent occurrences of palindromic sequences. Comparative studies of SSR markers showed that there were 256 markers in C. hexagyna and 255 in O. baccatus; the majority of the SSRs in these plastid genomes were mononucleotide repeats (A/T). All the clusters in the phylogenetic tree had high support. This study reported the first complete plastid genomes of the genera Caylusea and Ochradenus and the first for the Resedaceae family.


2021 ◽  
Author(s):  
Weicai Song ◽  
Zimeng Chen ◽  
Qi Feng ◽  
Chuxuan Ji ◽  
Chengbo Wei ◽  
...  

Abstract Background: Litsea, Lauraceae, is a group of evergreen trees or shrubs that widely distributed in tropical and subtropical countries, such as Asia and America. Species in Litsea are spontaneously distributed at a maximum altitude of 2,700 m from sea level. Pants and its extractions from Litsea species cover a wide range of medicinal and industrial values. The aromatic oil extracted from Litsea is of great value with citral as its main component. At present, studies related to gene resources of Litsea are limited in the morphological analysis, while studies at the genetic level are insufficient. We therefore firstly assembled and annotated the complete chloroplast genome of nine species in Litsea, carried out a serious of comparative analysis, and completed the construction of phylogenetic tree within genus Litsea. Results: The genome length ranged from 152,051 to 152,717 bp. A total of 128 genes were identified, including 84 protein-coding genes, 36 rRNA genes and 8 tRNA genes. High consistency of codon bias, repeats, divergent analysis, single nucleotide polymorphisms (SNP) and insertions and deletions (InDels) revealed highly conserved chloroplast phenotypes in species within the genus Litsea. Changes in gene length and the present of pseudogene ycf1Ψ that caused by IR contraction and expansion were reported. The non-coding regions, especially atpF - atpH and ndhC - trnV-UAC presented high gene divergence. PsbJ - psbE regions showed remarkably high nucleotide diversity (Pi) values. Furthermore, we constructed two phylogenetic trees, demonstrating two dominant clades within genus Litsea. And the differences between trees constructed by full chloroplast (cp) genome and protein-coding genes were revealed. Conclusion: Overall, the evolutionary pattern of Litsea species regarding structural features, repeats sequences and variations presented high consistency. Valuable genomic resources and theoretical basis were also provided for further research of taxonomic discrepancies, molecular marker-assisted breeding and phylogenetic relationships of Litsea and other angiosperm species.


Genome ◽  
2020 ◽  
Vol 63 (1) ◽  
pp. 53-60 ◽  
Author(s):  
Liping Nie ◽  
Yingxian Cui ◽  
Xinlian Chen ◽  
Zhichao Xu ◽  
Wei Sun ◽  
...  

Arctium lappa, commonly called burdock, has a long medicinal and edible history. It has recently gained increasing attention because of its economic value. In this study, we obtained the complete chloroplast genome of A. lappa by Illumina Hiseq. The complete chloroplast genome of A. lappa is a typical circular structure with 152 708 bp in length. The GC content in the whole chloroplast genome of A. lappa is 37.7%. A total of 37 tRNA genes, 8 rRNA genes, and 87 protein-coding genes were successfully annotated. And the chloroplast genome contains 113 unique genes, 19 of which are duplicated in the inverted repeat. The distribution of 39 simple sequence repeats was analysed, and most of them are in the large single-copy (LSC) sequence. An inversion comprising 16 genes was found in the LSC region, which is 26 283 bp long. We performed multiple sequence alignments using 72 common protein-coding genes of 29 species and constructed a Maximum Parsimony (MP) tree. The MP phylogenetic result shows that A. lappa grouped together with Carthamus tinctorius, Centaurea diffusa, and Saussurea involucrata. The chloroplast genome of A. lappa is a valuable resource for further studies in Asteraceae.


2019 ◽  
Author(s):  
Han Xu

Abstract Backgroud: Amaranthus palmeri, A. tuberculatus and A. arenicola are alien invasive dioecious amaranths originated from North America which have similar morphology and complex taxonomic relationship with their relatives. To search for effective molecular methods and accurate species boundary for detecting the alien invasive species, we sequenced whole chloroplast genome of 6 amaranths species, of which A. palmeri , A. arenicola , A. retroflexus and A. dubius are the first reports.Results: The complete chloroplast genome of 6 species has a circular molecular structure of 150,454 to 150,939 bp in length with 36.6% of GC content and contains a total of 134 genes, including 89 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. There are a total of 802 parsimony-informative (PI) sites within genes and intergenic spacers. The rpl22-rps19 , ndhG-I , rpl 32- trnLUAG , trnPUGG-psaJ and ccsA - ndhD are the hotspots in the genus. And the 1,601 bp fragment from rpl32 to psaC has contained maximum variants with 82 PI sites. A. arenicola differs from A. tuberculatus with 19 PI sites located in 14 genes and spacers separately. The regions for differentiate A. dubius , A. hypochondriacus and A. caudatus of the Hybrid complex only fasten on 2 coding genes and 5 intergenic spacers. The patristic distances (0.00001-0.00005) among the three species are approximate to the distance (0.00005) between individuals of A. tuberculatus . Conformed to dioecious and monoecious distinctions but different with previous phylogenetic studies, A. palmeri clustered with A. arenicola and A. tuberculatus and formed a stable clade of subgen. Acnida .Conclusion: The chloroplast genome has played a role in offering enough information for discrimination and phylogenetic relationship among the Amaranthus subgen. Acnida . The most valuable regions of chloroplast genome in Amaranthus are intergenic spacers and could differentiate A. arenicola from A. tuberculatus better. Subsequently, much more Amaranthus species should be sequenced and analyzed complementally in the future.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1517
Author(s):  
Se-Hwan Cheon ◽  
Min-Ah Woo ◽  
Sangjin Jo ◽  
Young-Kee Kim ◽  
Ki-Joong Kim

The genus Zoysia Willd. (Chloridoideae) is widely distributed from the temperate regions of Northeast Asia—including China, Japan, and Korea—to the tropical regions of Southeast Asia. Among these, four species—Zoysia japonica Steud., Zoysia sinica Hance, Zoysia tenuifolia Thiele, and Zoysia macrostachya Franch. & Sav.—are naturally distributed in the Korean Peninsula. In this study, we report the complete plastome sequences of these Korean Zoysia species (NCBI acc. nos. MF953592, MF967579~MF967581). The length of Zoysia plastomes ranges from 135,854 to 135,904 bp, and the plastomes have a typical quadripartite structure, which consists of a pair of inverted repeat regions (20,962~20,966 bp) separated by a large (81,348~81,392 bp) and a small (12,582~12,586 bp) single-copy region. In terms of gene order and structure, Zoysia plastomes are similar to the typical plastomes of Poaceae. The plastomes encode 110 genes, of which 76 are protein-coding genes, 30 are tRNA genes, and four are rRNA genes. Fourteen genes contain single introns and one gene has two introns. Three evolutionary hotspot spacer regions—atpB~rbcL, rps16~rps3, and rpl32~trnL-UAG—were recognized among six analyzed Zoysia species. The high divergences in the atpB~rbcL spacer and rpl16~rpl3 region are primarily due to the differences in base substitutions and indels. In contrast, the high divergence between rpl32~trnL-UAG spacers is due to a small inversion with a pair of 22 bp stem and an 11 bp loop. Simple sequence repeats (SSRs) were identified in 59 different locations in Z. japonica, 63 in Z. sinica, 62 in Z. macrostachya, and 63 in Z. tenuifolia plastomes. Phylogenetic analysis showed that the Zoysia (Zoysiinae) forms a monophyletic group, which is sister to Sporobolus (Sporobolinae), with 100% bootstrap support. Within the Zoysia clade, the relationship of (Z. sinica, Z japonica), (Z. tenuifolia, Z. matrella), (Z. macrostachya, Z. macrantha) was suggested.


2019 ◽  
Vol 8 (37) ◽  
Author(s):  
Gareth T. Little ◽  
Muhammad Ehsaan ◽  
Christian Arenas-López ◽  
Kamran Jawed ◽  
Klaus Winzer ◽  
...  

The hydrogen-utilizing strain Cupriavidus necator H16 (DSM 428) was sequenced using a combination of PacBio and Illumina sequencing. Annotation of this strain reveals 6,543 protein-coding genes, 263 pseudogenes, 64 tRNA genes, and 15 rRNA genes.


2018 ◽  
Vol 94 ◽  
Author(s):  
P. Zhang ◽  
R.K. Ran ◽  
A.Y. Abdullahi ◽  
X.L. Shi ◽  
Y. Huang ◽  
...  

AbstractDipetalonema gracile is a common parasite in squirrel monkeys (Saimiri sciureus), which can cause malnutrition and progressive wasting of the host, and lead to death in the case of massive infection. This study aimed to identify a suspected D. gracile worm from a dead squirrel monkey by means of molecular biology, and to amplify its complete mitochondrial genome by polymerase chain reaction (PCR) and sequence analysis. The results identified the worm as D. gracile, and the full length of its complete mitochondrial genome was 13,584 bp, which contained 22 tRNA genes, 12 protein-coding genes, two rRNA genes, one AT-rich region and one small non-coding region. The nucleotide composition included A (16.89%), G (20.19%), T (56.22%) and C (6.70%), among which A + T = 73.11%. The 12 protein-coding genes used TTG and ATT as start codons, and TAG and TAA as stop codons. Among the 22 tRNA genes, only trnS1AGN and trnS2UCN exhibited the TΨC-loop structure, while the other 20 tRNAs showed the TV-loop structure. The rrnL (986 bp) and rrnS (685 bp) genes were single-stranded and conserved in secondary structure. This study has enriched the mitochondrial gene database of Dipetalonema and laid a scientific basis for further study on classification, and genetic and evolutionary relationships of Dipetalonema nematodes.


2021 ◽  
Vol 10 (7) ◽  
Author(s):  
Kentaro Miyazaki ◽  
Hikaru Suenaga ◽  
Mamoru Oshiki ◽  
Shuichi Kawano ◽  
Toshikazu Fukushima

ABSTRACT A thiocyanate-degrading bacterium, Thiohalobacter sp. strain COW1, was isolated from activated sludge treating coke oven wastewater, and the complete genome sequence was determined. COW1 contained a single circular chromosome (3.23 Mb; G+C content, 63.4%) in which 2,788 protein-coding genes, 39 tRNA genes, and 3 rRNA genes were identified.


Sign in / Sign up

Export Citation Format

Share Document