scholarly journals Mechanical Ventilation with Dynamic Compliance-Guided Positive End-Expiratory Pressure in Laparoscopic Surgery with Trendelenburg Positioning: A Eandomised Controlled Study

Author(s):  
Yun Wang ◽  
Huijuan Wang ◽  
Xiaoli Wang ◽  
Hong Wang ◽  
Shitong Li ◽  
...  

Abstract BACKGROUND: The intraoperative cardiorespiratory effect of ventilation with individualised positive end-expiratory pressure guided by dynamic compliance (Cdyn) remains undefined. We investigated whether individualised protective ventilation would protect the heart and lung more efficiently than standard protective ventilation during abdominal laparoscopic surgery with Trendelenburg positioning.METHODS: Forty patients undergoing abdominal laparoscopic surgery were randomly divided into two groups: Group T (titrimetric PEEP) and Group I (intentional PEEP, 5 cmH2O). Parameters of right ventricular function were measured via transoesophageal echocardiography, including tricuspid annular plane systolic excursion (TAPSE), early filling-to-late filling ratio of the right ventricle, and right ventricular end-diastolic area/left ventricular end-diastolic area (RVEDA/LVEDA) ratio. Cdyn, driving pressure (∆P), ratio of dead space to tidal volume (VD/VT), and partial pressure of arterial oxygen to inspiratory oxygen fraction (PF) ratio were measured during mechanical ventilation.RESULTS: The RVEDA/LVEDA ratio in all patients increased significantly at T2 compared with T0, but there were no significant differences in TAPSE or E/A ratio between groups during the whole procedure (P>0.05). Cdyn, ∆P, and VD/VT ratios in Group T were significantly improved compared to those in Group I at T2 (P<0.05). There was no significant difference in the PF ratio between groups (P>0.05).CONCLUSIONS: Intraoperative lung-protective ventilation with Cdyn-guided PEEP improved Cdyn, ∆P, and VD/VT ratio without obvious side effects on right ventricular function compared to standard protective ventilation during laparoscopic surgery with Trendelenburg positioning, which suggests that it is a circulation-friendly way to titrate PEEP for intraoperative lung protective ventilation.TRIAL REGISTRATION: Trial registration date: 13/09/2020; Trial registration number: ChiCTR2000038212.

Author(s):  
O. V. Filyk

The aim of the work: to determine causes of unsuccessful weaning depending on subglottic edema markers, level of sedation and sedation-agitation, changes in neurological status and bulbar disorders in children with different types of respiratory failure. Materials and Methods. We conducted a prospective cohort single-center study at the Department of Anesthesiology and Intensive Care at Lviv Regional Children's Clinical Hospital "OHMATDYT". We included 89 patients aged 1 month – 18 years with acute respiratory failure who was mechanically ventilated for more than 3 days. They were randomly divided into 2 groups. Group I included patients who received lung-protective ventilation strategy and assessment central nervous system function and the percentage of leakage of the gas mixture near the endotracheal tube; group II – patients who received diaphragm-protective in addition to lung-protective ventilation strategy and took into account the results of central nervous system assessment and respiratory gas mixture leakage near endotracheal tube during weaning from mechanical ventilation. The primary endpoint was the frequency of reintubations, the secon­dary endpoint was the frequency of complications (tracheostomy). 82 patients were included in the data analysis. Patients were divided into age subgroups: subgroup 1 – children 1 month – 1 year; subgroup – children 1–3 years; subgroup 3 – children 3–6 years; subgroup 4 – children 6–13 years; subgroup 5 – children 13–18 years. Results and Discussion. The frequency of reintubations in patients of the age subgroup 1 was reduced in group II to 5.3 % compared with 22.7 % in group I (p = 0.02), which was accompanied by a higher frequency of elective tracheostomy (before the first attempt of weaning from mechanical ventilation) which was 11 % in comparison with 0 %, p = 0.001). The frequency of reintubations in the age subgroup 2 was reduced to 5.9 % in group II vs 20 % in group I (p = 0.04), and elective tracheostomy was performed in 18 % patients in group II vs 5 % patients in group I (p = 0.05). There were no significant differences in the frequency of reintubations among patients in the age subgroup 3 (14.2 % in group I vs 11.1 % in group II, p = 0.31); in the age subgroup 4 (13 % vs 17 %, p = 0.19); the age subgroup 5 (6 % vs 7 %, p = 0.72).


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 2040 ◽  
Author(s):  
Roger Alencar ◽  
Vittorio D'Angelo ◽  
Rachel Carmona ◽  
Marcus J Schultz ◽  
Ary Serpa Neto

Although mechanical ventilation is a life-saving strategy in critically ill patients and an indispensable tool in patients under general anesthesia for surgery, it also acts as a double-edged sword. Indeed, ventilation is increasingly recognized as a potentially dangerous intrusion that has the potential to harm lungs, in a condition known as ‘ventilator-induced lung injury’ (VILI). So-called ‘lung-protective’ ventilator settings aiming at prevention of VILI have been shown to improve outcomes in patients with acute respiratory distress syndrome (ARDS), and, over the last few years, there has been increasing interest in possible benefit of lung-protective ventilation in patients under ventilation for reasons other than ARDS. Patients without ARDS could benefit from tidal volume reduction during mechanical ventilation. However, it is uncertain whether higher levels of positive end-expiratory pressure could benefit these patients as well. Finally, recent evidence suggests that patients without ARDS should receive low driving pressures during ventilation.


2018 ◽  
Vol 69 (1) ◽  
pp. 771
Author(s):  
N. VIDENOVIC ◽  
J. MLADENOVIC ◽  
V. VIDENOVIC ◽  
R. ZDRAVKOVIC

Mechanical ventilation has long been the leader in the treatment of critically ill and injured patients in an intensive care unit. The aim of this study was to examine the impact of the application of positive end-expiratory pressure on histopathological findings and on the parameters of ventilation, oxygenation and acid-base status. The experimental study included 42 animals (piglets), which were divided into of tree groups, each containing 14. The animals of the control group (conventional ventilation) were ventilated with the tidal volume of 10-15 mL/kg. Tidal volume of 6 mL/kg was applied in the low tidal ventilation group, whereas the ventilation strategy in the lung protective ventilation group meant the application of a tidal volume of 6 mL/kg and the 7 mbar of positive end-expiratory pressure. Mechanical ventilation in each animal lasted for 4 hours. After conducting mechanical ventilation, samples were taken from the lung tissue, which were sent for histopathological examination. The parameters of ventilation, oxygenation and acid-base status were measured after each hour’s duration of mechanical ventilation. Application of positive end-expiratory pressure 5-10 mbar during mechanical ventilation is a safe and useful method which is not followed by the occurrence of significant abnormalities in the structure of the ventilated lung. However, a low tidal volume without positive end-expiratory pressure causes significant changes in the histological structure of healthy lungs. Positive end-expiratory pressure keeps the alveoli open throughout the respiratory cycle which allows the lungs to maintain homeostasis in terms of adequate ventilation, oxygenation and acid-base status.


CHEST Journal ◽  
1987 ◽  
Vol 92 (6) ◽  
pp. 999-1004 ◽  
Author(s):  
Claude Martin ◽  
Pierre Saux ◽  
Jacques Albanese ◽  
Jean Jacques Bonneru ◽  
François Gouin

2018 ◽  
Author(s):  
Pauline K. Park ◽  
Nicole L Werner ◽  
Carl Haas

Invasive and noninvasive ventilation are important tools in the clinician’s armamentarium for managing acute respiratory failure. Although these modalities do not treat the underlying disease, they can provide the necessary oxygenation and ventilatory support until the causal pathology resolves. Care must be taken as even appropriate application can cause harm. Knowledge of pulmonary mechanics, appreciation of the basic machine settings, and an understanding of how common and advanced modes function allows the clinician to optimally tailor support to the patient while limiting iatrogenic injury. This second chapter reviews indications for mechanical ventilation, routine management, troubleshooting, and liberation from mechanical ventilation This review contains 6 figures, 7 tables and 60 references Keywords: Mechanical ventilation, lung protective ventilation, sedation, ventilator-induced lung injury, liberation from mechanical ventilation 


Sign in / Sign up

Export Citation Format

Share Document