scholarly journals Inoculation of Herbaspirillum Seropedicae Increases Biomass in Maize Roots in the Early Stages of Plant Development

Author(s):  
Elisandra Triches da Cunha ◽  
Ana Marina Pedrolo ◽  
Jessica Cavalheiro Ferreira Bueno ◽  
Tomás Pelizzaro Pereira ◽  
Cláudio Roberto Fônseca Sousa Soares ◽  
...  

Abstract Herbaspirillum seropedicae is a plant growth-promoting bacteria isolated from diverse plant species. In this work, the main objective was to investigate the efficiency of H. seropedicae strain SmR1 in colonizing and increasing maize growth in the early stages of development under greenhouse conditions. Inoculation with H. seropedicae resulted in 10.51 and 19.43% in mean of increase of root biomass concerning non-inoculated controls, mainly in the initial stages of plant development, at 21 days after emergence (DAE). Quantification of H. seropedicae in roots and leaves was performed by quantitative PCR.. H. seropedicae was detected only in maize inoculated roots by qPCR, and a slight decrease in DNA copy number g−1 of fresh root weight was observed from 7 to 21 DAE, suggesting that there was initial effective colonization on maize plants. H. seropedicae strain SmR1 efficiently increased maize root biomass exhibiting its potencial to be used as inoculant in agricultures systems.

Author(s):  
Tomás Pellizzaro Pereira ◽  
Fernanda Plucani do Amaral ◽  
Pamela Dall’Asta ◽  
Fábio Cristiano Angonesi Brod ◽  
Ana Carolina Maisonnave Arisi

Revista CERES ◽  
2012 ◽  
Vol 59 (6) ◽  
pp. 841-849 ◽  
Author(s):  
Marihus Altoé Baldotto ◽  
Lílian Estrela Borges Baldotto ◽  
Rogério Batista Santana ◽  
Cláudio Roberto Marciano

The inoculation with plant growth-promoting bacteria can be a technological approach useful for increasing the production of maize. The objective of this study was to evaluate the initial performance of maize in response to application of doses of NPK combined with the inoculation of the diazotrophic bacteria Herbaspirillum seropedicae in an greenhouse experiment. The experiment consisted of six fertilizer levels: 0, 25, 50, 75, 100 and 200% of the recommended dose of NPK applied to maize inoculated and non-inoculated with H. seropedicae. At 30 days after the treatment application, the growth characteristics and nutritional status of the plants were evaluated. Plant development was influenced by fertilization, but it was enhanced by combination with the bacteria, which resulted in significant increases in the dry mass of shoots (7%) and leaf area (9%) when compared with non-inoculated plants. The results showed increases in the concentration of N (11%), P (30%) and K (17%) of maize plants in response to bacterial inoculation together with NPK compared with plants that were applied fertilize only. The greater consistency and stability response of the host plant to bacterization in the presence of chemical fertilizer indicate a promissory biotechnological approach for improving the initial growth and adaptation of maize to the cultivation environment.


2021 ◽  
Vol 16 (8) ◽  
pp. 75-80
Author(s):  
Pitchaiah Pelapudi ◽  
Sasikala Ch ◽  
Swarnabala Ganti

In the present rapid growing world, need for a sustainable agricultural practice which helps in meeting the adequate food demand is much needed. In this context, plant growth promoting bacteria were brought into the spot light by the researchers. Though the plant growth promoting bacteria have several beneficial applications, due to some of the disadvantages in the field conditions, they lagged behind. In the current research work, native PGPR were isolated from the rhizosphere soil samples of maize with an aim to isolate the nitrogen fixing, phosphate solubilising and potash solubilising bacteria. Out of the several isolates, potent PGPR isolates viz., Paenibacillus durus PCPB067, Bacillus megaterium PCBMG041 and Paenibacillus glucanolyticus PCPG051 were isolated and identified by using the 16 S rRNA gene sequencing studies. Genomic DNA sequences obtained were deposited in the NCBI Genbank and accession numbers were assigned as MW793452, MW793456 and MW843633. In order to check the efficacy of the PGPR isolates, pot trials were conducted by taking maize as the host plant. Several parameters viz. shoot length, shoot weight, root length, root weight and weight of the seeds were tested in which PGP treatment showed good results (shoot length - 187±3.5 cm, shoot weight - 31±4 g, root length - 32±3.6 cm, root weight - 17±2 g, yield- 103.3±6.1 g) when compared to the chemical fertilizer treatment (shoot length - 177±3.5 cm, shoot weight - 25±3.6 g, root length - 24±3.5 cm, root weight - 14.6±1.52 g, yield- 85.6±7.6 g). Based on the results, it can be stated that these native PGPR isolates can be effectively used in the plant growth promotion of maize.


Author(s):  
Lynda Kelvin Asogwa ◽  
Frank C. Ogbo

Aims: To isolate Plant Growth Promoting Bacillus strain from maize roots, to evaluate its biocontrol potentials and to characterize the isolate using16S rRNA sequencing. Place and Duration of Study: Department of Applied Microbiology and Brewing, Nnamdi Azikiwe University, Awka, between February 2019 and March 2020. Methodology: The isolation of Plant Growth Promoting Rhizobacteria (PGPR) from maize roots was done using Pikovskaya (PVK) agar. Quantitative determination of phosphate was carried out using PVK broth. Evaluations of other plant growth promoting properties were carried out such as IAA, etc. Fusarium and Enterobacter plant pathogens were isolated from diseased maize plants. The in vitro antagonism effects of the PGPR isolates against the pathogens were analyzed using the dual culture plate technique. The pot experiment was carried out in a completely randomized design. Plant characteristics such as plant height, shoot  and root weight, chlorophyll content, as well as disease assessment were recorded accordingly. The organisms were identified using phenotypic and molecular methods. Results: Seven PGPR bacteria were isolated from maize (Zea mays) roots using PVK agar. Aneurinibacillus migulanus gave the highest solubilization index of 4.21 while isolate IS48 gave the lowest solubilization index of 1.47. A. migulanus produced IAA, ammonia and cellulase enzyme but no hydrogen cyanide. The organism showed antagonism activity against the two tested phytopathogens. In the pot experiment, A. migulanus treated plants showed a statistically insignificant difference in maize plant height at P=0.05 but gave significant increases in shoot and root wet weights. The organism offered 83.33% and 71.43% protection against Enterobacter and Fusarium pathogens respectively in the pot experiment. Conclusion: A. migulanus solubilized phosphate in addition to other plant growth promoting  properties. It showed biocontrol potentials both in vitro and in vivo and thus can be used as substitute for synthetic agrochemicals.


2016 ◽  
Vol 46 (2) ◽  
pp. 111-118 ◽  
Author(s):  
Krisle da SILVA ◽  
Liamara PERIN ◽  
Maria de Lourdes GOMES ◽  
Alexandre Cardoso BARAÚNA ◽  
Gilmara Maria Duarte PEREIRA ◽  
...  

ABSTRACT Maize plants can establish beneficial associations with plant growth-promoting bacteria. However, few studies have been conducted on the characterization and inoculation of these bacteria in the Amazon region. This study aimed to characterize endophytic bacteria isolated from maize in the Amazon region and to assess their capacity to promote plant growth. Fifty-five bacterial isolates were obtained from maize grown in two types of ecosystems, i.e., a cerrado (savanna) and a forest area. The isolates were characterized by the presence of the nifH gene, their ability to synthesize indole-3-acetic acid (IAA) and solubilize calcium phosphate (CaHPO4), and 16S rRNA partial gene sequencing. Twenty-four bacteria contained the nifH gene, of which seven were isolated from maize plants cultivated in a cerrado area and seventeen from a forest area. Fourteen samples showed the capacity to synthesize IAA and only four solubilized calcium phosphate. The following genera were found among these isolates: Pseudomonas; Acinetobacter; Enterobacter; Pantoea; Burkholderia and Bacillus. In addition, eight isolates with plant growth-promoting capacity were selected for a glasshouse experiment involving the inoculation of two maize genotypes (a hybrid and a variety) grown in pots containing soil. Inoculation promoted the development of the maize plants but no significant interaction between maize cultivar and bacterial inoculation was found. A high diversity of endophytic bacteria is present in the Amazon region and these bacteria have potential to promote the development of maize plants.


1998 ◽  
Vol 44 (2) ◽  
pp. 162-167 ◽  
Author(s):  
A V Sturz ◽  
B R Christie ◽  
B G Matheson

Clover and potatoes, in a crop rotation, were found to share specific associations of bacterial endophytes. Twenty-five bacterial species from 18 genera were common to both clover and potatoes and represented 73% of all the bacteria recovered from clover root tissues and 73% of all the bacteria recovered from potato tubers. Endophytic bacteria tested in potato plant bioassays were predominantly plant growth neutral (56%). The remainder were either plant growth promoting (21%) or plant growth inhibiting (24%)(P < 0.05). Of the plant growth promoting bacteria, 63% increased shoot height, 66% increased shoot wet weight, and 55% increased root wet weight. The effects of plant growth inhibiting bacteria were restricted to reductions in plant height (86%) and shoot wet weight (36%); root weight was not affected. Of the bacteria tested, 74% showed some degree of in vitro antibiosis to the clover and potato pathogen Rhizoctonia solani. Such endophytic intercrop bacterial associations appear to be complementary in nature and support the view that there are microbial benefits to be gained from clover in crop sequences with potatoes, beyond those of the residual nitrogen left in the soil and the organic matter added.Key words: Trifolium, allelopathy, endophytic, plant growth promoting, antifungal, crop rotation, Solanum.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mariana Grillo-Puertas ◽  
Josefina M. Villegas ◽  
Vânia C. S. Pankievicz ◽  
Michelle Z. Tadra-Sfeir ◽  
Francisco J. Teles Mota ◽  
...  

Herbaspirillum seropedicae is a nitrogen-fixing endophytic bacterium associated with important cereal crops, which promotes plant growth, increasing their productivity. The understanding of the physiological responses of this bacterium to different concentrations of prevailing nutrients as phosphate (Pi) is scarce. In some bacteria, culture media Pi concentration modulates the levels of intracellular polyphosphate (polyP), modifying their cellular fitness. Here, global changes of H. seropedicae SmR1 were evaluated in response to environmental Pi concentrations, based on differential intracellular polyP levels. Cells grown in high-Pi medium (50 mM) maintained high polyP levels in stationary phase, while those grown in sufficient Pi medium (5 mM) degraded it. Through a RNA-seq approach, comparison of transcriptional profiles of H. seropedicae cultures revealed that 670 genes were differentially expressed between both Pi growth conditions, with 57% repressed and 43% induced in the high Pi condition. Molecular and physiological analyses revealed that aspects related to Pi metabolism, biosynthesis of flagella and chemotaxis, energy production, and polyhydroxybutyrate metabolism were induced in the high-Pi condition, while those involved in adhesion and stress response were repressed. The present study demonstrated that variations in environmental Pi concentration affect H. seropedicae traits related to survival and other important physiological characteristics. Since environmental conditions can influence the effectiveness of the plant growth-promoting bacteria, enhancement of bacterial robustness to withstand different stressful situations is an interesting challenge. The obtained data could serve not only to understand the bacterial behavior in respect to changes in rhizospheric Pi gradients but also as a base to design strategies to improve different bacterial features focusing on biotechnological and/or agricultural purposes.


mBio ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. e03078-20
Author(s):  
Fernanda Plucani do Amaral ◽  
Thalita Regina Tuleski ◽  
Vania Carla Silva Pankievicz ◽  
Ryan A. Melnyk ◽  
Adam P. Arkin ◽  
...  

ABSTRACTThe plant rhizosphere harbors a diverse population of microorganisms, including beneficial plant growth-promoting bacteria (PGPB), that colonize plant roots and enhance growth and productivity. In order to specifically define bacterial traits that contribute to this beneficial interaction, we used high-throughput transposon mutagenesis sequencing (TnSeq) in two model root-bacterium systems associated with Setaria viridis: Azoarcus olearius DQS4T and Herbaspirillum seropedicae SmR1. This approach identified ∼100 significant genes for each bacterium that appeared to confer a competitive advantage for root colonization. Most of the genes identified specifically in A. olearius encoded metabolism functions, whereas genes identified in H. seropedicae were motility related, suggesting that each strain requires unique functions for competitive root colonization. Genes were experimentally validated by site-directed mutagenesis, followed by inoculation of the mutated bacteria onto S. viridis roots individually, as well as in competition with the wild-type strain. The results identify key bacterial functions involved in iron uptake, polyhydroxybutyrate metabolism, and regulation of aromatic metabolism as important for root colonization. The hope is that by improving our understanding of the molecular mechanisms used by PGPB to colonize plants, we can increase the adoption of these bacteria in agriculture to improve the sustainability of modern cropping systems.IMPORTANCE There is growing interest in the use of associative, plant growth-promoting bacteria (PGPB) as biofertilizers to serve as a sustainable alternative for agriculture application. While a variety of mechanisms have been proposed to explain bacterial plant growth promotion, the molecular details of this process remain unclear. The current research supports the idea that PGPB use in agriculture will be promoted by gaining more knowledge as to how these bacteria colonize plants, promote growth, and do so consistently. Specifically, the research seeks to identify those bacterial genes involved in the ability of two, PGPB strains, Azoarcus olearius and Herbaspirillum seropedicae, to colonize the roots of the C4 model grass Setaria viridis. Applying a transposon mutagenesis (TnSeq) approach, we assigned phenotypes and function to genes that affect bacterial competitiveness during root colonization. The results suggest that each bacterial strain requires unique functions for root colonization but also suggests that a few, critical functions are needed by both bacteria, pointing to some common mechanisms. The hope is that such information can be exploited to improve the use and performance of PGPB in agriculture.


Symbiosis ◽  
2013 ◽  
Vol 61 (3) ◽  
pp. 125-133 ◽  
Author(s):  
Alexandro Cézar Faleiro ◽  
Tomás Pellizzaro Pereira ◽  
Eliandro Espindula ◽  
Fábio Cristiano Angonesi Brod ◽  
Ana Carolina Maisonnave Arisi

Sign in / Sign up

Export Citation Format

Share Document