scholarly journals Influence of the Distance Between Nozzle and Substrate on Structural, Photoluminescence, and Detector Characteristics of p-NiO/n-Si Hetero-Junction Deposited by Spray Pyrolysis Method

Author(s):  
Husam R. Abed ◽  
Ameer I. Khudadad ◽  
Fadhil Mahmood Oleiwi

Abstract In the present investigation, p-NiO has been deposited on n-Si (100) substrate by the spray pyrolysis method. The effect of the distance between the substrate and the nozzle on the structural, photoluminescence, and detection properties has been well inspected. XRD analysis proved the polycrystalline system with a cubic structure for NiO. The elemental analysis confirmed the existence of Ni, O, and Si materials without any impurities. The FESEM analysis showed nano and micro particles distributed on the Si layer, the micro particles have porous like structures which play a significant role as photons guider. The photoluminescence measurement depicted three main peaks at the UV and visible regions of the electromagnetic spectrum which are related to near band edge emission and defects within the crystal, respectively. I-V characteristics revealed good conductivity under UV illumination, and the highest current was recorded by a sample when the distance between the nozzle and the substrate is 25 cm. The responsivity elucidated a high value at UV region with 6.5 mA/W, and the current-time properties demonstrated good reproducibility, high stability and photoresponse, and rapid response and recovery times of 0.375 and 0.791 s, respectively at a lower bias voltage of 1.5 Volt under UV photons source.

2011 ◽  
Vol 199-200 ◽  
pp. 1936-1939
Author(s):  
Xiao Zhang ◽  
Hua Wang ◽  
Ji Wen Xu ◽  
Ling Yang ◽  
Ming Fang Ren

CuInS2 thin films were prepared on heated glass substrates by ultrasonic spray pyrolysis method. Structure, surface morphology and properties of films with different Cu/In ratios have been investigated. X-ray diffraction (XRD) analysis demonstrated that as-prepared CuInS2 thin films with chalcopyrite structure have a preferential orientation along the (112) direction. SEM study shows films are relatively dense and smooth, but the much bigger grains and the large coherent agglomerates appear in films (Cu/In>1.25) due to the appearance of phase Cu2S. CuInS2 thin film (Cu/In=1.25) has a strong visible absorption and its energy band gap comes up to 1.45eV.


2018 ◽  
Vol 4 (5) ◽  
pp. 572-574 ◽  
Author(s):  
Ebitha Eqbal ◽  
E. Hilal Rahman ◽  
E.I. Anila

Fluorine doped tin oxide (FTO) thin films were synthesized by chemical spray pyrolysis method on glass substrates for 10 at.%, 15 at.%, 20 at.% of fluorine doping concentrations. Their structural, optical and electrical properties were investigated. X-ray diffraction (XRD) study shows polycrystalline nature of the films with orthorhombic crystal structure. The grain size (D) was observed in the range of 14 nm to 30 nm. The FESEM images of the FTO thin films reveals that the films have smooth and homogeneous surface morphology with thin granular grains distributed throughout the surface. EDX analysis confirms the presence of Sn, O and F elements in the prepared FTO thin films. Photoluminescence (PL) spectrum shows a broad emission which covers near band edge (NBE) as well as deep level emissions (DLE) in the region 380 nm and 620 nm. From the hall effect measurements, it was observed that all the films exhibit n-type conductivity. The sample grown with 10 at. % of fluorine showed the highest transmission percentage (80%) with high mobility and conductivity, which are basic requirements for a TCO.


2015 ◽  
Vol 68 (1) ◽  
pp. 2479-2490 ◽  
Author(s):  
G. Tsimekas ◽  
E. Papastergiades ◽  
N. E. Kiratzis

ChemInform ◽  
2015 ◽  
Vol 46 (28) ◽  
pp. no-no
Author(s):  
Zhen Jia ◽  
Qinmiao Chen ◽  
Jin Chen ◽  
Tingting Wang ◽  
Zhenqing Li ◽  
...  

2008 ◽  
Vol 116 (1353) ◽  
pp. 600-604 ◽  
Author(s):  
Jung Sang CHO ◽  
Dae Soo JUNG ◽  
Seung Kwon HONG ◽  
Yun Chan KANG

Sign in / Sign up

Export Citation Format

Share Document