scholarly journals Application seismic refraction method to characterize the building site of Injibara University building site,injibara Ethiopia

Author(s):  
Abraham Mulualem

Abstract Geophysical investigation using seismic refraction method was conducted for engineering characterization of the foundation conditions of Injibara University buildings construction site located in Injibara town of Amhara Regional State, northwestern Ethiopia. The principal objective of the research was studying the suitability of the foundation earth materials underlying the site, where Injibara University is established. The seven refraction seismic spreads, seismic velocity models interpretation have provided valuable geotechnical information incorporated with available geologic information in the study area. Interpretation of geophysical data revealed that the subsurface geology of the area is composed of three layers. The topsoil consisted of clay, silt and sand mixtures having a 1-4 m thickness and 255-510 m/s p-wave velocity ranges are mapped over the whole area. The second layer attributed to the highly weathered and fractured vesicular basalt is characterized by 948-1802 m/s P-wave velocity range and revealed somewhat undulating morphology. The depth extent of this layer varies from about 10m on the North West end and southeastern parts and to about 27m around the central part. The third layer occurred in the depth range of 10-27m is characterized by greater than 2550m/s average high p-wave velocity and it is due to moderately weathered and fractured basaltic bedrock, which is deeper near to the center of the profiles and gets shallower towards North West end and southeastern portions. Besides, analyses of collected data have suggested the possible locations of minor structural discontinuities (maybe local fractures).The geophysical results show that the bedrock is found at shallow depth in the northwestern end and southeastern part of the study area, whereas in the central part of the survey area the bedrock is found relatively at high depth. Therefore, setting the building foundation is more recommended in the southeastern part of the construction site.

1984 ◽  
Vol 74 (4) ◽  
pp. 1263-1274
Author(s):  
Lawrence H. Jaksha ◽  
David H. Evans

Abstract A velocity model of the crust in northwestern New Mexico has been constructed from an interpretation of direct, refracted, and reflected seismic waves. The model suggests a sedimentary section about 3 km thick with an average P-wave velocity of 3.6 km/sec. The crystalline upper crust is 28 km thick and has a P-wave velocity of 6.1 km/sec. The lower crust below the Conrad discontinuity has an average P-wave velocity of about 7.0 km/sec and a thickness near 17 km. Some evidence suggests that velocity in both the upper and lower crust increases with depth. The P-wave velocity in the uppermost mantle is 7.95 ± 0.15 km/sec. The total crustal thickness near Farmington, New Mexico, is about 48 km (datum = 1.6 km above sea level), and there is evidence for crustal thinning to the southeast.


2020 ◽  
Vol 8 (6) ◽  
pp. 1785-1794

The objective of the current investigations is to estimate the dynamic geotechnical properties necessary for evaluating the conditions of the subsurface in order to make better decisions for economic and safe designs of the proposed structures at a Steel Rolling Factory, Ataqa Industrial Area, Northwestern Gulf of Suez, Egypt. To achieve this purpose, four seismic refraction profiles were conducted to measure the velocity of primary seismic waves (P-waves) and four profiles were conducted using Multichannel Analysis of Surface Waves (MASW) technique in the same locations of refraction profiles to measure the velocity of shear waves (S-waves). SeisImager/2D Software Package was used in the analysis of the measured data. Data processing and interpretation reflect that the subsurface section in the study area consists of two layers, the first layer is a thin surface layer ranges in thickness from 1 to 4 meters with P-wave velocity ranges from 924 m/s to 1247 m/s and S-wave velocity ranges from 530 m/s to 745 m/s. The second layer has a P-wave velocity ranges from 1277 m/s to 1573 m/s and the S-wave velocity ranges from 684 m/s to 853 m/s. Geotechnical parameters were calculated for both layers. Since elastic moduli such as Poisson’s ratio, shear modulus, Young’s modulus, and bulk’s modulus were calculated. Competence scales such as material index, stress ratio, concentration index, and density gradient were calculated also. In addition, the ultimate and allowable bearing capacities


2018 ◽  
pp. 267-283
Author(s):  
Ronald T. Marple ◽  
James D. Hurd, Jr. ◽  
Lanbo Liu ◽  
Seth Travis ◽  
Robert J. Altamura

High-resolution LiDAR (light detection and ranging) images of northeastern Massachusetts and southeastern New Hampshire reveal a 10-km-long, NW-SE-oriented topographic lineament in northeastern Massachusetts that we interpret to be the surface expression of a SW-dipping thrust fault along which the 1727 Newbury, Massachusetts, earthquake occurred. The Newburyport lineament coincides with the northeast edge of a 10-kmlong, NW-SE-oriented ridge, herein named Merrimack ridge, that parallels the NW-SE-trending segment of the Merrimack River downstream from where it bends 90° to the southeast. The northwestern end of the Newburyport lineament coincides with a 1-km-long, ~7- to 15-m-high, NE-facing Newburyport scarp that is located just south of the bend in the river. The Newburyport lineament also parallels the NW-SE-oriented nodal planes of the focal mechanism that was generated for the 1999 Amesbury, Massachusetts, earthquake. A P-wave velocity tomographic model generated from a seismic-refraction profile across the Newburyport scarp shows a ~40-m-wide low-velocity zone dipping ~41° SW. Velocities along this zone decrease 15–50%, which suggests that the Newburyport lineament is associated with the surface expression of a SW-dipping brittle fault zone. The LiDAR images also revealed three other NW-SE-trending lineaments in the study area.


2011 ◽  
Author(s):  
Marcelo Peres Rocha ◽  
Welitom Rodrigues Borges ◽  
Eduardo Xavier Seimetz ◽  
Paulo Araujo de Azevedo ◽  
Marcio Maciel Cavalcanti ◽  
...  

Author(s):  
Resi Wasilatus Syifa ◽  
Nur Ichsan Sumardani ◽  
Nur Amalia Dewi ◽  
Teti Febrianti ◽  
Jauhari Arifin ◽  
...  

Research has been carried out using seismic refraction in the LIPI area - Bandung, which aims to determine the land of embankment in the area. Retrieval of field data was carried out using geometric  Es-3000 tool along 46 meters with a spacing of 2 meters and a 7 shoot punch consisting of 2 phantom shoots beginning and ending. Data processing is done by the first step, namely by geometric editing so that data can be read by the computer. The inversion process is done by seismimager software which consists of pickwin to extract data and plotera for modeling the subsurface layer. The results of the data interpretation show the P wave velocity from 315 - 435 m / s. layer grouping based on P wave velocity is at the first color layer having a wave velocity of about 315 - 342 m / s, the second color layer has a wave speed of 355-382 m / s, and the third color layer has a speed of 359 - 422 m / s and thick layer more than 435. Based on the lithological classification of subsurface rock layers, this study area tends to have a layer of soil type with a depth of 5 meters, and can be said to be a layer of soil deposits because of the formation of soil structures that tend to be new


2020 ◽  
Vol 6 (2) ◽  
pp. 91-100
Author(s):  
Rhahmi Adni Pesma ◽  
Mokhammad Puput Erlangga ◽  
Intan Adiani Putri ◽  
Risky Martin Antosia ◽  
Ruhul Firdaus ◽  
...  

An initial subsurface survey to predict the aquifer is important to avoid the unprospect drill location and getting groundwater with the right discharge. In this study, prediction of the aquifer was carried out using the seismic refraction method in Jatimulyo Village, Jati Agung District, South Lampung Regency. The data was collected on October 6, 2019 using the SUMMIT X One seismic tool with 24 Geophones. The first break data from p-wave travel time is processed and interpreted using the Hagiwara method. Interpretation results show that there are three layers of subsurface lithology in the study area. The weathering layer was found at 2 m to 3.5 m depth with average velocity of 360 m/s. The second layer is dry sand with a velocity of 890 m/s at a depth of 2 m to 8 m. The third layer with a 2300 m/s velocity is a mixture of clay rock and saturated sand at depths of more than 8 m. As a comparison there is resistivity distribution data on the same measurement line in the study area. The overall interpretation shows that at a depth of 12 m with saturated clay sedimentary rock as a prospect of aquifer in this study area.


1996 ◽  
Vol 33 (3) ◽  
pp. 460-471 ◽  
Author(s):  
Ian Reid

A detailed seismic refraction profile was shot along the continental shelf off Labrador, across the boundary between the Archean Nain Province to the north and the Proterozoic Makkovik orogenic zone to the south. A large air-gun source was used, with five ocean-bottom seismometers as receivers. The data were analysed by forward modelling of traveltimes and amplitudes and provided a well-determined seismic velocity structure of the crust along the profile. Within the Nain province, thin postrift sediments are underlain by crust with a P-wave velocity of 6.1 km/s, which increases with depth and reaches 6.6 km/s at about 8 km. Moho is at around 28 km, and there is no evidence for a high-velocity (>7 km/s) lower crust. The P- and S-wave velocity structure is consistent with a gneissic composition for the Archean upper crust, and with granulites becoming gradually more mafic with depth for the intermediate and lower crust. In the Makkovik zone, the sediments are thicker, and a basement layer of P-wave velocity 5.5–5.7 km/s is present, probably due to reworking of the crust and the presence of Early Proterozoic volcanics and metasediments. Upper crustal velocities are lower than in the Nain Province. The crustal thickness, at 23 km, is less, possibly due in part to greater crustal stretching during the Mesozoic rifting of the Labrador Sea. The crustal structure across the Nain–Makkovik boundary is similar to that across the corresponding Archean–Ketilidian boundary off southwest Greenland.


2015 ◽  
Vol 773-774 ◽  
pp. 1549-1554 ◽  
Author(s):  
Mohd Jazlan Mad Said ◽  
Adnan Zainorabidin ◽  
Aziman Madun

Soil velocity profile often used as subsurface characterization by using geophysical technic. Seismic refraction is one of geophysical technique to determine primary wave (p-wave) velocity of soil profile. In this paper, seismic refraction technique has been performed on two different types of soft soil (peat soil and RECESS clay) for comparison of its p-wave velocity soil profile. From p-wave velocity soil profile comparison, its show the peat soil has soil velocity range from 211 m/s – 534 m/s at depth of 0 – 4 m while the soft clay show soil velocity range from 248 m/s – 1842 m/s at depth of 0 – 5.5 m. The profiles of peat soils and RECESS clay have been verified using peat samplers and existing borehole data. Both of velocity soil profiles, indicated that peat soil have lower velocity compare with soft clay due to its unique and soft soil characteristics. The difference of p-wave velocity soil profile between peat soil and soft clay are clearly showed both soils have different soil p-wave velocity with different soils characteristics.


Sign in / Sign up

Export Citation Format

Share Document