scholarly journals Maximizing Average Sum Rate of Small Cells in 5G Ultra-dense Networks with Deployment Optimization

Author(s):  
Yihao Luo ◽  
Yang Yang ◽  
Long Zhang ◽  
Dazhong He ◽  
Jie Yang

Abstract As the evolution of trends of intelligent IoT in 5G era, ultra-dense networks (UDN) become a promising paradigm via densely deploying small cells in cellular networks, where the transmission rate of mobile users can be highly improved. In this paper, an investigative study was presented regarding optimizing deployment of small cell base stations (BS) to maximize the average sum rate (ASR) in 5G UDN. In particular on a stochastic geometrical perspective, a homogeneous-type Poisson point process (PPP) was used for depicting an arbitrary arrangement of both macro cell user equipment (UE) and small cell BSs. Moreover, the closed-form probabilities of successful transmission was derived regarding the uplink and downlink of small cells. Then, the ASR of small cells was obtained as well as the problem of maximizing ASR was analyzed with outage constraints. Further, the study also demonstrated that the maximum ASR located in a closed interval of small cell BS density, where the lower and higher bounds of the interval were obtained. Finally, for maximizing the ASR value, the optimal small cell BS density in a closed-form was derived out with convex optimization theory. Simulation analysis indicated that different constraints from the macro cell network led to different maximum ASRs, and interferences caused by small cells and macro cell UE had likewise influenced the performance of small cells.

2021 ◽  
Author(s):  
Mobasshir Mahbub ◽  
Bobby Barua

Abstract Advancements of cellular networks such as 4G and 5G proposed the collaboration of small-cell technologies in mobile networks and constructed a heterogeneous network (HetNet) for collaborative connectivity. There are many benefits of small-cell-based collective communication such as the increase of device capability in indoor/outdoor locations, enhancement of wireless coverage, improved signal efficiency, lower implementation costs of gNB (Next-generation Base Station introduced in 5G), etc. The integration of small-cells by deploying low-power BSs (base stations) in conventional macro-gNBs was investigated as a convenient and economical way of raising the potentials of a cellular network with high demand from consumers. The fusion of small-cells with macro-cells offers increased coverage and capacity for heterogeneous networks. Therefore, the research aimed to realize the performance of a small-cell deployed under a macro-cell in a two-tier heterogeneous network. The research first modified the reference equation for measuring the received power by introducing the transmitter and receiver gain. The paper then measured the SINR, throughput, spectral efficiency, and power efficiency for both downlink and uplink by empirical simulation. The research further enlisted the notable outcomes after examining the simulation results and discussed some relevant research scopes in the concluding sections of the paper.


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1040
Author(s):  
Menghan Wei ◽  
Youjia Chen ◽  
Ming Ding

Unmanned aerial vehicles (UAVs), featured by the high-mobility and high-quality propagation environment, have shown great potential in wireless communication applications. In this paper, a novel UAV-aided small-cell content caching network is proposed and analyzed, where joint transmission (JT) is considered in the dense small-cell networks and mobile UAVs are employed to shorten the serving distance. The system performance is evaluated in terms of the average cache hit probability and the ergodic transmission rate. From the analytical results, we find that (i) the proposed UAV-aided small-cell network shows superior caching performance and, even with a small density of UAVs the system’s cache hit probability, can be improved significantly; (ii) the content’s optimal caching probability to maximize the cache hit probability is proportional to the (K+1)-th root of its request probability, where K is the number of small-cell base stations that serve each user by JT; (iii) caching the most popular content in UAVs may lead to a low transmission rate due to the limited resource offered by the low-density UAVs. Simulation results are presented to validate the theoretical results and the performance gain achieved by the optimal caching strategy.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1493
Author(s):  
Ayesha Ayub ◽  
Sobia Jangsher ◽  
M. Majid Butt ◽  
Abdur Rahman Maud ◽  
Farrukh A. Bhatti

Small cells deliver cost-effective capacity and coverage enhancement in a cellular network. In this work, we present the interplay of two technologies, namely Wi-Fi offloading and small-cell cooperation that help in achieving this goal. Both these technologies are also being considered for 5G and B5G (Beyond 5G). We simultaneously consider Wi-Fi offloading and small-cell cooperation to maximize average user throughput in the small-cell network. We propose two heuristic methods, namely Sequential Cooperative Rate Enhancement (SCRE) and Sequential Offloading Rate Enhancement (SORE) to demonstrate cooperation and Wi-Fi offloading, respectively. SCRE is based on cooperative communication in which a user data rate requirement is satisfied through association with multiple small-cell base stations (SBSs). However, SORE is based on Wi-Fi offloading, in which users are offloaded to the nearest Wi-Fi Access Point and use its leftover capacity when they are unable to satisfy their rate constraint from a single SBS. Moreover, we propose an algorithm to switch between the two schemes (cooperation and Wi-Fi offloading) to ensure maximum average user throughput in the network. This is called the Switching between Cooperation and Offloading (SCO) algorithm and it switches depending upon the network conditions. We analyze these algorithms under varying requirements of rate threshold, number of resource blocks and user density in the network. The results indicate that SCRE is more beneficial for a sparse network where it also delivers relatively higher average data rates to cell-edge users. On the other hand, SORE is more advantageous in a dense network provided sufficient leftover Wi-Fi capacity is available and more users are present in the Wi-Fi coverage area.


2021 ◽  
Author(s):  
Joydev Ghosh

<div>In LTE-A (LTE-Advanced), the access network cell formation is an integrated form of outdoor unit and indoor unit. With the indoor unit extension the access network becomes heterogeneous (HetNet). HetNet is a straightforward way to provide quality of service (QoS) in terms better network coverage and high data rate. Although, due to uncoordinated, densely deployed small cells large interference may occur, particularly in case of operating small cells within the spectrum of macro base stations (MBS). This paper probes the impact of small cell on the outage probability and the average network throughput enhancement. The positions of the small cells are retained random and modelled with homogeneous Poisson Point Process (PPP) and Matérn Cluster process (MCP). The paper provides an analytic form which permits to compute the outage probability, including the mostly applied fast fading channel types. Furthermore, simulations are evaluated in order to calculate the average network throughput for both random processes. Simulation results highlights that the network throughput remarkably grows due to small cell deployment.</div>


MACRo 2015 ◽  
2015 ◽  
Vol 1 (1) ◽  
pp. 135-144
Author(s):  
Péter Ratkóczy ◽  
Attila Mitcsenkov

AbstractThe experienced mobile traffic increase in the recent years made traffic capacity the bottleneck instead of the coverage constraints, calling for significantly higher density of the base stations. Heterogeneous radio access networks (HetNet) provide a possible solution to this problem, combining various wireless technologies. In this paper we investigated the joint dimensioning of the co-existent radio access networks, the relation between the required macro and small cell densities to meet a certain traffic demand, and compared the two main, competing technological solutions, namely small cells and Wi-Fi, suitable to complement an LTE (macrocell) network.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Wooseong Kim

Ultradense Network (UDN) with small cells is a key feature to begin a new era of 5G communication, which provides higher data rate, and accommodate explosive mobile traffic. Recently, mmWave-based wireless backhauls accelerate deployment of the UDN by reducing cost of fiber-optic cabling to small cells. The small cells can deliver user data to macro enhanced NodeBs (eNBs) using multihop relay in wireless backhaul mesh that consists of small and macro cell eNBs connected by the mmWave links. For such a heterogeneous small cell network (HetNet), 3GPP introduced dual connectivity (i.e., dual connections to macro and small cell eNBs), which is an attractive standard feature to manage user mobility and network access in the small cells. In this paper, we exploit dual connectivity scheme in a HetNet with the mmWave-based backhaul mesh which introduces two main challenges for throughput maximization, multihop routing from small to macro cell, and selection of a small cell eNB for user equipment (UE). We establish an optimization model and find an optimal solution in terms of throughput and fairness using an IBM CPLEX solver. Additionally, we propose a heuristic algorithm for complexity reduction and compare it with the optimal results in evaluation.


2021 ◽  
Author(s):  
Joydev Ghosh

<div>In LTE-A (LTE-Advanced), the access network cell formation is an integrated form of outdoor unit and indoor unit. With the indoor unit extension the access network becomes heterogeneous (HetNet). HetNet is a straightforward way to provide quality of service (QoS) in terms better network coverage and high data rate. Although, due to uncoordinated, densely deployed small cells large interference may occur, particularly in case of operating small cells within the spectrum of macro base stations (MBS). This paper probes the impact of small cell on the outage probability and the average network throughput enhancement. The positions of the small cells are retained random and modelled with homogeneous Poisson Point Process (PPP) and Matérn Cluster process (MCP). The paper provides an analytic form which permits to compute the outage probability, including the mostly applied fast fading channel types. Furthermore, simulations are evaluated in order to calculate the average network throughput for both random processes. Simulation results highlights that the network throughput remarkably grows due to small cell deployment.</div>


Author(s):  
Soumya Ranjan Samal ◽  
Shuvabrata Bandopadhaya ◽  
Kaliprasanna Swain ◽  
Vladimir Poulkov

This paper has analysed the mobility management schemes in heterogenous cellular networks (HCNs) considering their power consumptions and network selection delays. The HCNs are the key enabler for 5G cellular network to ensure better user connectivity in ultra-dense networks. Large numbers of small cells are deployed under a macro-cell targeting network hot spot. However, ensuring seamless coverage to the mobile subscribers in motion is challenging in such networks. Frequent handoff between the cells with different bandwidth, throughput, latency, and coverage penetrations, significantly increases the signalling overhead in network. In this context, an efficient mobility management scheme plays a key role for the success of HCN technology. In this paper, a detailed behavioural study of mobility management schemes used in HCN has been provided. For mobile users in the network, the power consumption and network selection delay has been evaluated for k-tier architecture of HCN.


2018 ◽  
Vol 184 (2) ◽  
pp. 211-215
Author(s):  
Marthinus Jacobus van Wyk ◽  
Jacobus Christiaan Visser ◽  
Christiaan Wynand le Roux

Abstract As mobile network technologies and usage change, mobile network cells have become smaller to meet the increased demand for data throughput. Small cell base stations are frequently used as a mobile network deployment method and are predominantly installed to service areas with a high density of people and to cover a small geographical area. Various measurement programs of the electromagnetic field (EMF) exposure have been conducted around base stations in general and these results have been published. There is, however, little data available on the EMF exposure levels around small cells. A measurement program was conducted to perform EMF exposure measurements around small cell base station sites. Results are compared to the relevant safety guidelines and to available data for EMF exposure around base stations in general.


Sign in / Sign up

Export Citation Format

Share Document