Transient Feature Extraction method based on adaptive TQWT sparse optimization

Author(s):  
xue liu ◽  
ao sun ◽  
jian hu

Abstract Aiming at the problem of strong impact, short response period and wide resonance frequency bandwidth of transient vibration signals, a transient feature extraction method based on adaptive Tunable Q-factor Wavelet Transform (TQWT) was proposed. Firstly, the characteristic frequency band of the vibration signal was selected according to the time-frequency distribution. Based on the characteristic frequency band, the sub-band average energy weighted wavelet Shannon entropy was used to optimize the number of decomposition layers, quality factor and redundancy of TQWT, so as to achieve the adaptive optimal matching of the impact characteristic components in the vibration signal. Then, according to the characteristics of the transient impact of the telemetry vibration signal, the TQWT decomposition coefficients were sparse reconstructed to obtain more sparse impact characteristics, and the weighted power spectrum kurtosis was used as the impact characteristic index to select the optimal sub-band, Finally, the inverse transform of TQWT was used to reconstruct the optimal sub-band to enhance its weak impact features. The simulation and measured signal processing results verify the effectiveness of the algorithm.

Author(s):  
Xue Liu ◽  
Ao Sun ◽  
Jian Hu

AbstractAiming at the problem of strong impact, short response period and wide resonance frequency bandwidth of transient vibration signals, a transient feature extraction method based on adaptive tunable Q-factor wavelet transform (TQWT) was proposed. Firstly, the characteristic frequency band of the vibration signal was selected according to the time–frequency distribution. Based on the characteristic frequency band, the sub-band average energy weighted wavelet Shannon entropy was used to optimize the number of decomposition layers, quality factor and redundancy of TQWT, so as to achieve the adaptive optimal matching of the impact characteristic components in the vibration signal. Then, according to the characteristics of the transient impact of the telemetry vibration signal, the TQWT decomposition coefficients were sparse reconstructed to obtain more sparse impact characteristics, and the weighted power spectrum kurtosis was used as the impact characteristic index to select the optimal sub-band, Finally, the inverse transform of TQWT was used to reconstruct the optimal sub-band to enhance its weak impact features. The simulation and measured signal processing results verify the effectiveness of the algorithm.


2021 ◽  
Vol 63 (8) ◽  
pp. 465-471
Author(s):  
Shang Zhiwu ◽  
Yu Yan ◽  
Geng Rui ◽  
Gao Maosheng ◽  
Li Wanxiang

Aiming at the local fault diagnosis of planetary gearbox gears, a feature extraction method based on improved dynamic time warping (IDTW) is proposed. As a calibration matching algorithm, the dynamic time warping method can detect the differences between a set of time-domain signals. This paper applies the method to fault diagnosis. The method is simpler and more intuitive than feature extraction methods in the frequency domain and the time-frequency domain, avoiding their limitations and disadvantages. Due to the shortcomings of complex calculation, singularity and poor robustness, the paper proposes an improved method. Finally, the method is verified by envelope spectral feature analysis and the local fault diagnosis of gears is realised.


2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Zhan Xing ◽  
Jianhui Lin ◽  
Yan Huang ◽  
Cai Yi

The feature extraction of wheelset-bearing fault is important for the safety service of high-speed train. In recent years, sparse representation is gradually applied to the fault diagnosis of wheelset-bearing. However, it is difficult for traditional sparse representation to extract fault features ideally when some strong interference components are imposed on the signal. Therefore, this paper proposes a novel feature extraction method of wheelset-bearing fault based on the wavelet sparse representation with adaptive local iterative filtering. In this method, the adaptive local iterative filtering reduces the impact of interference components effectively and contributes to the extraction of sparse impulses. The wavelet sparse representation, which adopts L1-regularized optimization for a globally optimal solution in sparse coding, extracts intrinsic features of fault in the wavelet domain. To validate the effectiveness of this proposed method, both simulated signals and experimental signals are analyzed. The results show that the fault features of wheelset-bearing are sufficiently extracted by the proposed method.


2014 ◽  
Vol 530-531 ◽  
pp. 345-348
Author(s):  
Min Qiang Xu ◽  
Hai Yang Zhao ◽  
Jin Dong Wang

This paper presents a feature extraction method based on LMD and MSE for reciprocating compressor according to the strong nonstationarity, nonlinearity and features coupling characteristics of vibration signal. The vibration signal was decomposed into a set of PFs, and then multiscale entropy of the first several PFs were calculated as feature vectors with different scale factors. Based on the maximum of average Euclidean distances, the feature vectors which have the best divisibility were selected. The feature vectors of reciprocating compressor at different bearing clearance states were extracted using this method, and superiority of this method is verified by comparing with the results of sample entropy.


Entropy ◽  
2021 ◽  
Vol 23 (10) ◽  
pp. 1319
Author(s):  
Haikun Shang ◽  
Junyan Xu ◽  
Yucai Li ◽  
Wei Lin ◽  
Jinjuan Wang

Effective diagnosis of vibration fault is of practical significance to ensure the safe and stable operation of power transformers. Aiming at the traditional problems of transformer vibration fault diagnosis, a novel feature extraction method based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and multi-scale dispersion entropy (MDE) was proposed. In this paper, CEEMDAN method is used to decompose the original transformer vibration signal. Additionally, then MDE is used to capture multi-scale fault features in the decomposed intrinsic mode functions (IMFs). Next, the principal component analysis (PCA) method is employed to reduce the feature dimension and extract the effective information in vibration signals. Finally, the simplified features are sent into density peak clustering (DPC) to get the fault diagnosis results. The experimental data analysis shows that CEEMDAN-MDE can effectively extract the information of the original vibration signals and DPC can accurately diagnose the types of transformer faults. By comparing different algorithms, the practicability and superiority of this proposed method are verified.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Junjun Chen ◽  
Bing Xu ◽  
Xin Zhang

To accurately describe the characteristics of a signal, the feature parameters in time domain and frequency domain are usually extracted for characterization. However, the total number of feature parameters in time domain and frequency domain exceeds twenty, and all of the feature parameters are used for feature extraction, which will result in a large amount of data processing. For the purpose of using fewer feature parameters to accurately reflect the characteristics of the vibration signal, a simple but effective vibration feature extraction method combining time-domain dimensional parameters (TDDP) and Mahalanobis distance (MD) is proposed, i.e., TDDP-MD. In this method, ten time-domain dimensional parameters are selected to extract fault features, and the distance evaluation technique based on Mahalanobis distance criterion function is also introduced to calculate the feature vector, which can be used to classify different failure types. Finally, the proposed method is applied to fault diagnosis of rolling element bearings, and experimental analysis results show that the proposed method can recognize different failure types accurately and effectively with only ten time-domain dimensional parameters and a small quantity of training samples.


Sign in / Sign up

Export Citation Format

Share Document