scholarly journals Three-Phase Distribution Transformer Connections Modeling Based on Matrix Operation Method by Phase-coordinates

Author(s):  
Zhigang Zhang ◽  
Mingrui Mo ◽  
Caizhu Wu

Abstract This paper proposes a matrix operation method for modeling the three-phase transformer by phase-coordinates. Based on decoupling theory, the 12x12 dimension primitive admittance matrix is obtained at first employing the coupling configuration of the windings. Under the condition of asymmetric magnetic circuits, according to the boundary conditions for transformer connections, the transformers in different connections enable to be modeling by the matrix operation method from the primitive admittance matrix. Another purpose of this paper is to explain the differences of the phase-coordinates and the positive sequence parameters in the impedances of the transformers. The numerical testing results in IEEE-4 system show that the proposed method is valid and efficient.

Author(s):  
Zhigang Zhang ◽  
Mingrui Mo ◽  
Caizhu Wu

AbstractThis paper proposes a matrix operation method for modeling the three-phase transformer by phase-coordinates. Based on decoupling theory, the 12 × 12 dimension primitive admittance matrix is obtained at first employing the coupling configuration of the windings. Under the condition of asymmetric magnetic circuits, according to the boundary conditions for transformer connections, the transformers in different connections enable to be modeling by the matrix operation method from the primitive admittance matrix. Another purpose of this paper is to explain the differences of the phase-coordinates and the positive sequence parameters in the impedances of the transformers. The numerical testing results in IEEE-4 system show that the proposed method is valid and efficient.


2021 ◽  
Vol 20 ◽  
pp. 01-11
Author(s):  
Ngo Minh Khoa ◽  
Tran Xuan Khoa

Nowadays, more distributed generations (DGs) are connected to a radial distribution network, so conventional overcurrent relays cannot operate correctly when a fault occurs in the network. This study proposes a method to determine the fault direction in a three-phase distribution network integrated with DGs. The obtained pre-fault and fault currents are utilized to extract their phasors by the fast Fourier transform, and the phase angle difference between the positive-sequence components of the pre-fault and fault currents is used. Moreover, the method only uses the local current measurement to calculate and identify the phase angle change of the fault current without using the voltage measurement. Matlab/Simulink software is used to simulate the three-phase distribution network integrated with DGs. The faults with different resistances are assumed to occur at backward and forward fault locations. The simulation results show that the proposed method correctly determines the fault direction.


Author(s):  
Enrique C. Quispe ◽  
Iván D. López ◽  
Fernando J. T. E. Ferreira ◽  
Vladimir Sousa

<p class="Abstract">This paper presents the results of a study about the effects of unbalanced voltages on the energy performance of three-phase induction motors. The principal contribution of this paper is that presents a detailed analysis of the influence of positive and negative sequence voltage components and the angle between them on several characteristics such as: line currents, losses, efficiency and power factor under different voltage unbalanced conditions. A three-phase induction motor of 3 HP was used as a case study. The results of the investigation show that the positive sequence voltage must be considered together with the voltage unbalance factor (VUF) or percent voltage unbalance (PVU) index to evaluate the performance of the induction motor. It is also shown that the behavior of the motor load influences on the positive sequence parameters next to the voltage, while in the case of negative sequence only influences the negative sequence voltage.</p>


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2754
Author(s):  
Mengmeng Xiao ◽  
Shaorong Wang ◽  
Zia Ullah

Three-phase imbalance is a long-term issue existing in low-voltage distribution networks (LVDNs), which consequently has an inverse impact on the safe and optimal operation of LVDNs. Recently, the increasing integration of single-phase distributed generations (DGs) and flexible loads has increased the probability of imbalance occurrence in LVDNs. To overcome the above challenges, this paper proposes a novel methodology based on the concept of "Active Asymmetry Energy-Absorbing (AAEA)" utilizing loads with a back-to-back converter, denoted as “AAEA Unit” in this paper. AAEA Units are deployed and coordinated to actively absorb asymmetry power among three phases for imbalance mitigation in LVDNs based on the high-precision, high-accuracy, and real-time distribution-level phasor measurement unit (D-PMU) data acquisition system and the 5th generation mobile networks (5G) communication channels. Furthermore, the control scheme of the proposed method includes three control units. Specifically, the positive-sequence control unit is designed to maintain the voltage of the DC-capacitor of the back-to-back converter. Likewise, the negative-sequence and zero-sequence control units are expected to mitigate the imbalanced current components. A simple imbalanced LVDN is modeled and tested in Simulink/Matlab (MathWorks, US). The obtained results demonstrate the effectiveness of the proposed methodology.


Computation ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 80
Author(s):  
John Fernando Martínez-Gil ◽  
Nicolas Alejandro Moyano-García ◽  
Oscar Danilo Montoya ◽  
Jorge Alexander Alarcon-Villamil

In this study, a new methodology is proposed to perform optimal selection of conductors in three-phase distribution networks through a discrete version of the metaheuristic method of vortex search. To represent the problem, a single-objective mathematical model with a mixed-integer nonlinear programming (MINLP) structure is used. As an objective function, minimization of the investment costs in conductors together with the technical losses of the network for a study period of one year is considered. Additionally, the model will be implemented in balanced and unbalanced test systems and with variations in the connection of their loads, i.e., Δ− and Y−connections. To evaluate the costs of the energy losses, a classical backward/forward three-phase power-flow method is implemented. Two test systems used in the specialized literature were employed, which comprise 8 and 27 nodes with radial structures in medium voltage levels. All computational implementations were developed in the MATLAB programming environment, and all results were evaluated in DigSILENT software to verify the effectiveness and the proposed three-phase unbalanced power-flow method. Comparative analyses with classical and Chu & Beasley genetic algorithms, tabu search algorithm, and exact MINLP approaches demonstrate the efficiency of the proposed optimization approach regarding the final value of the objective function.


Sign in / Sign up

Export Citation Format

Share Document