scholarly journals Identification of a Novel Genomic Region Associated With Resistance to Fusarium Head Blight in Chinese Winter Wheat

Author(s):  
Yunzhe Zhao ◽  
Xinying Zhao ◽  
Mengqi Ji ◽  
Wenqi Fang ◽  
Hong Guo ◽  
...  

Abstract Background: Fusarium head blight (FHB) is a disease affecting wheat spikes caused by Fusarium species, which leads to cases of severe yield reduction and seed contamination. Therefore, identifying resistance genes from various sources is always of importance to wheat breeders. In this study, a genome-wide association study (GWAS) focusing on FHB using a high-density genetic map constructed with 90K single nucleotide polymorphism (SNP) arrays in a panel of 205 elite winter wheat accessions, was conducted in 3 environments. Results: Sixty-six significant marker–trait associations (MTAs) were identified (P<0.001) on fifteen chromosomes explaining 5.4–11.2% of the phenotypic variation therein. Some important new genomic regions involving FHB resistance were found on chromosomes 2A, 3B, 5B, 6A, and 7B. On chromosome 7B, 6 MTAs at 92 genetic positions were found in 2 environments. Moreover, there were 11 MTAs consistently associated with diseased spikelet rate and diseased rachis rate as pleiotropic effect loci. Eight new candidate genes of FHB resistance were predicated in wheat. Of which, three genes: TraesCS5D01G006700, TraesCS6A02G013600, and TraesCS7B02G370700 on chromosome 5DS, 6AS, and 7BL, respectively, were important in defending against FHB by regulating chitinase activity, calcium ion binding, intramolecular transferase activity, and UDP-glycosyltransferase activity in wheat. In addition, a total of six excellent alleles associated with wheat scab resistance were discovered. Conclusion: These results provide important genes/loci for enhancing FHB resistance in wheat breeding populations by marker-assisted selection.

Plant Disease ◽  
2021 ◽  
Author(s):  
Rupesh Gaire ◽  
Clay Sneller ◽  
Gina Brown-Guedira ◽  
David A. Van Sanford ◽  
Mohsen Mohammadi ◽  
...  

Fusarium head blight (FHB) is a devastating disease of wheat and barley. In the US, a significant long-term investment in breeding FHB resistant cultivars began after the 1990s. However, to this date, no study has been performed to understand and monitor the rate of genetic progress in FHB resistance as a result of this investment. Using 20 years of data (1998 to 2018) from the Northern Uniform (NU) and Preliminarily Northern Uniform (PNU) winter wheat scab nurseries which consisted of 1068 genotypes originating from 9 different institutions, we studied the genetic trends in FHB resistance within the northern soft red winter wheat growing region using mixed model analyses. For the FHB resistance traits incidence, severity, Fusarium damaged kernels (FDK), and deoxynivalenol content, the rate of genetic gain in disease resistance was estimated to be 0.30 ± 0.1, 0.60 ± 0.09, 0.37 ± 0.11 points per year, and 0.11 ± 0.05 ppm per year, respectively. Among the five FHB resistance QTL assayed for test entries from 2012 to 2018, the frequencies of favorable alleles from Fhb 2DL Wuhan1 W14, Fhb Ernie 3Bc, and Fhb 5A Ning7840 was close to zero across the years. The frequency of the favorable at Fhb1 and Fhb 5A Ernie ranged from 0.08 to 0.33 and 0.06 to 0.20 respectively across years, and there was no trend in changes in allele frequencies over years. Overall, this study showed that substantial genetic progress has been made towards improving resistance to FHB. It is apparent that the current investment in public wheat breeding for FHB resistance is achieving results and will continue to play a vital role in reducing FHB levels in growers’ fields.


2021 ◽  
Author(s):  
Xianrui Guo ◽  
Qinghua Shi ◽  
Jing Yuan ◽  
Mian Wang ◽  
Jing Wang ◽  
...  

AbstractFusarium head blight (FHB), caused by Fusarium species, seriously threaten global wheat production. Three wheat-Th.elongatum FHB resistant translocation lines have been developed and used for breeding. Transcriptomic analysis identified a derivative glutathione S-transferase transcript T26102, which was homologous to Fhb7 and induced dramatically by Fusarium graminearum. Homologs of Fhb7 were detected in several genera in Triticeae, including Thinopyrum, Elymus, Leymus, Pseudoroegeria and Roegeria. Several wheat-Thinopyrum translocation lines carrying Fhb7 remain susceptible to FHB, and transgenic plants overexpressing the T26102 on different backgrounds did not improve the FHB resistance. Taken as a whole, we show the application of the chromatin derived from diploid Thinopyrum elongatum successfully conferring wheat with high level FHB resistance independent of the Fhb7.One Sentence SummaryThinopyrum elongatum chromatin from 7EL was successfully applied to wheat FHB resistance breeding, but the resistant gene other than the reported Fhb7 remained unknown.


Pathogens ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 58 ◽  
Author(s):  
Moustafa Eldakak ◽  
Aayudh Das ◽  
Yongbin Zhuang ◽  
Jai Rohila ◽  
Karl Glover ◽  
...  

Fusarium head blight (FHB) is a highly detrimental disease of wheat. A quantitative trait locus for FHB resistance, Qfhb1, is the most utilized source of resistance in wheat-breeding programs, but very little is known about its resistance mechanism. In this study, we elucidated a prospective FHB resistance mechanism by investigating the proteomic signatures of Qfhb1 in a pair of contrasting wheat near-isogenic lines (NIL) after 24 h of inoculation of wheat florets by Fusarium graminearum. Statistical comparisons of the abundances of protein spots on the 2D-DIGE gels of contrasting NILs (fhb1+ NIL = Qfhb1 present; fhb1- NIL = Qfhb1 absent) enabled us to select 80 high-ranking differentially accumulated protein (DAP) spots. An additional evaluation confirmed that the DAP spots were specific to the spikelet from fhb1- NIL (50 spots), and fhb1+ NIL (seven spots). The proteomic data also suggest that the absence of Qfhb1 makes the fhb1- NIL vulnerable to Fusarium attack by constitutively impairing several mechanisms including sucrose homeostasis by enhancing starch synthesis from sucrose. In the absence of Qfhb1, Fusarium inoculations severely damaged photosynthetic machinery; altered the metabolism of carbohydrates, nitrogen and phenylpropanoids; disrupted the balance of proton gradients across relevant membranes; disturbed the homeostasis of many important signaling molecules induced the mobility of cellular repair; and reduced translational activities. These changes in the fhb1- NIL led to strong defense responses centered on the hypersensitive response (HSR), resulting in infected cells suicide and the consequent initiation of FHB development. Therefore, the results of this study suggest that Qfhb1 largely functions to either alleviate HSR or to manipulate the host cells to not respond to Fusarium infection.


2020 ◽  
Author(s):  
Hui Wang ◽  
Shuwei Cheng ◽  
Yue Shi ◽  
Shuxin Zhang ◽  
Wei Yan ◽  
...  

Abstract Background: Partial amphiploids created by crossing octoploid tritelytrigia and Thinopyrum intermedium are important intermediates in wheat breeding because of their resistance to major wheat diseases. We examined the chromosome compositions of five wheat Th. intermedium partial amphiploids using GISH and multicolor FISH. Results: The result revealed that five lines had 10 14 J genome chromosomes from Th. intermedium and 42 common wheat chromosomes, using the J genomic DNA from Th. bessarabicum and the oligo probes pAs1 1 , pAs1 3 , AFA 4 , GAA ) 10, and pSc119.2 1 . Five lines resembled the parent Ganmai 8 but had better protein contents. P rotein contents of t wo lines HS2 2 and HS2 5 were up to more than 20%. Evaluation of Fusarium head blight (FHB) resistance revealed that the percent of symptomatic spikelets (PSS) of these lines were below 30%. Lines HS2 2, HS2 4, HS2 5, and HS2 16 were less than 20%. Line HS2 5 with 14 J genome chromosomes from Th. intermedium showed the best disease resistance, with PSS values of 10.8% and 16.6% in 2016 and 2017, respectively. Conclusions: New wheat Th. intermedium amphiploids with the J genome chromosomes were identified and can be considered as a valuable source of FHB resistance in wheat breeding.


2019 ◽  
Author(s):  
Wenjing Hu ◽  
Derong Gao ◽  
Hongya Wu ◽  
Jian Liu ◽  
Chunmei Zhang ◽  
...  

Abstract Background: Fusarium head blight (FHB), primarily caused by Fusarium graminearum, is a major threat to wheat production and food security worldwide. Breeding stably and durably resistant cultivars is the most effective approach for managing and controlling the disease. The success of FHB resistance breeding relies on identification of an effective resistant germplasm. We performed a genome-wide association study (GWAS) using the high-density wheat 90K single nucleotide polymorphism (SNP) assays to better understand the genetic basis of FHB resistance in natural population and identify associated molecular markers. Results: The resistance to FHB fungal spread along the rachis (Type II resistance) was evaluated on 171 wheat cultivars in the 2016-2017 (abbr. as 2017) and 2017-2018 (abbr. as 2018) growing seasons. Using Illumina Infinum iSelect 90K SNP genotyping data, a genome-wide association study (GWAS) identified 26 loci (88 marker-trait associations), which explained 6.65-14.18% of the phenotypic variances. The associated loci distributed across all chromosomes except 2D, 6A, 6D and 7D, with those on chromosomes 1B, 4A, 5D and 7A being detected in both years. New loci for Type II resistance were found on syntenic genomic regions of chromsome 4AL (QFhb-4AL, 621.85-622.24 Mb) and chromosome 5DL (QFhb-5DL, 546.09-547.27 Mb) which showed high collinearity in gene content and order. SNP markers wsnp_JD_c4438_5568170 and wsnp_CAP11_c209_198467 of 5D, reported previously linked to a soil-borne wheat mosaic virus (SBWMV) resistance gene, were also associated with FHB resistance in this study. Conclusion: The syntenic FHB resistant loci and associated SNP markers identified in this study are valuable for FHB resistance breeding via marker-assisted selection.


2018 ◽  
Vol 11 (4) ◽  
pp. 539-557 ◽  
Author(s):  
Á. Mesterházy ◽  
M. Varga ◽  
A. György ◽  
S. Lehoczki-Krsjak ◽  
B. Tóth

Since resistance is the most important agent in regulating deoxynivalenol (DON), breeding for higher resistance is the key to improve food safety. Fusarium damaged kernels (FDK) show a closer correlation with DON than visual symptoms. This implies a difference in genetic regulation. For this reason, the mapping should be extended not only for the visual symptoms, but also for FDK and DON. Quantitative trait loci influencing only Fusarium head blight (FHB) symptoms, may not be relevant for FDK and DON. Type I and II were pooled to overall resistance at spray inoculation. From 2010 to 2016 three selection platforms were compared by checking running variety breeding programs. The use of exotic sources in breeding significantly increased the number of more resistant genotypes in each selection phase from F3-F8 generations compared to the control program where crosses were not planned for FHB resistance and screening in early generations was also not performed. However, also in this breeding platform – at a lower rate – moderately or highly resistant genotypes could be selected. Of them, eight cultivars were/are in commercial production. The Fusarium breeding program using only adapted and more resistant parents generally gave closer results to exotic breeds, and several highly resistant genotypes were produced as a result. For winter wheat the phenotypic screening at high disease pressure is the key to select highly resistant materials. At low infection pressure the high and medium resistant genotypes come in the same group. The use of more isolates increases the chance to have strong selection pressure each year. FHB resistance was combined with leaf rust, yellow rust, powdery mildew, leaf spot resistance and high protein content (15-18%). The cultivar registration and post registration screening is the key in improving food safety in commercial production.


2012 ◽  
Author(s):  
◽  
Md Sariful Islam

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Fusarium head blight (FHB) mainly caused by Fusarium graminearum Schwabe [telomorph: Gibberella zeae Schw. (Petch)] causes devastating losses in wheat globally. Host-plant resistance provides the best hope for reducing economic losses but sources of resistance are limited. "Truman" soft red winter wheat, developed and released by the University of Missouri has excellent broad-based FHB resistance. This research was conducted to identify QTL associated with five components of resistance in Truman. Two years (2 replications per year) of phenotypic data were collected on these components of resistance on a set of 167 F9 recombinant inbred lines developed from the cross Truman/MO 94-317. Genetic linkage maps were constructed using 160 single sequence repeat and 530 diversity array technology polymorphic markers. Across years, QTL for type II resistance were identified on chromosomes 1BSc, 2BL, 2DS and 3BSc; for disease incidence on 2ASc, 2DS, and 3DS; for disease severity on 2DS, and 3BSc; for Fusarium damage kernels (FDK) on 2ASc, 2DS, and 3BLc; and for low DON on 2ASc, 2DS, and 3BLc. Additional QTL for FDK were identified on 1BLc, 2ASc, and 3BLc; and for DON on 2ASc, 2DS, and 6ALc were identified from phenotypic data collected in Kentucky. The effects of identified QTL ranged from 5.0 to 30.7 % of the total phenotypic variation. Several of these QTL appear to be potentially novel and therefore should enhance FHB resistance in programs attempting to pyramid unique FHB resistance genes through marker-assisted-selection.


2011 ◽  
Vol 47 (Special Issue) ◽  
pp. S115-S122 ◽  
Author(s):  
L. Tamburic-Ilincic ◽  
D. Falk ◽  
A. Schaafsma

Fusarium head blight (FHB) is one of the most serious diseases of wheat (Triticum aestivum L.). FHB&nbsp;reduces grain yield and quality, and the fungus produces mycotoxins, such as deoxynivalenol (DON). The most practical way to control FHB is through the development of resistant cultivars. In addition to exotic sources of resistance (such as cultivars Sumai 3 and Frontana), native sources of resistance are commonly used in winter wheat breeding programs in North America. In 1996, 2000, and 2004 severe epidemics of FHB cost the winter wheat industry in Ontario, Canada combined over $200 million. All wheat grown in Ontario is entered in the Ontario Winter Wheat Performance Trial (OWWPT) and tested every year for Fusarium resistance and DON&nbsp;level in three inoculated FHB nurseries. The objective of this study is to explain how the index that accounts for FHB&nbsp;symptoms and DON level jointly was developed, and how stable the performance of the cultivars grouped to susceptibility classes has been over a number of years. The index is related to Fusarium susceptibility classes (moderately resistant &ndash; MR, moderately susceptible &ndash; MS, susceptible &ndash; S and highly susceptible &ndash; HS), robust, stable, open-ended (old cultivars out, new cultivars in) and useful to farmers in making cultivars selection decisions. This information is available to growers and industry through the website www.gocereals.ca.


2019 ◽  
Vol 109 (7) ◽  
pp. 1208-1216 ◽  
Author(s):  
Lei Wu ◽  
Yu Zhang ◽  
Yi He ◽  
Peng Jiang ◽  
Xu Zhang ◽  
...  

Improving resistance to Fusarium head blight (FHB) in wheat is crucial in the integrated management of the disease and prevention of deoxynivalenol (DON) contamination in grains. To identify novel sources of resistance, a genome-wide association study (GWAS) was performed using a panel of 213 accessions of elite wheat germplasm of China. The panel was evaluated for FHB severity in four environments and DON content in grains in two environments. High correlations across environments and high heritability were observed for FHB severity and DON content in grains. The panel was also genotyped with the 90K Illumina iSelect single nucleotide polymorphism (SNP) array and 11,461 SNP markers were obtained. The GWAS revealed a total of six and three loci significantly associated with resistance to fungal spread and DON accumulation in at least two environments, respectively. QFHB-2BL.1 tagged by IWB52433 and QFHB-3A tagged by IWB50548 were responsible for resistance to both fungal spread and DON accumulation. In summary, this study provided an overview of FHB resistance resources in elite Chinese wheat germplasm and identified novel resistance loci that could be used for wheat improvement.


Sign in / Sign up

Export Citation Format

Share Document