scholarly journals A Quantitative Proteomics View on the Function of Qfhb1, a Major QTL for Fusarium Head Blight Resistance in Wheat

Pathogens ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 58 ◽  
Author(s):  
Moustafa Eldakak ◽  
Aayudh Das ◽  
Yongbin Zhuang ◽  
Jai Rohila ◽  
Karl Glover ◽  
...  

Fusarium head blight (FHB) is a highly detrimental disease of wheat. A quantitative trait locus for FHB resistance, Qfhb1, is the most utilized source of resistance in wheat-breeding programs, but very little is known about its resistance mechanism. In this study, we elucidated a prospective FHB resistance mechanism by investigating the proteomic signatures of Qfhb1 in a pair of contrasting wheat near-isogenic lines (NIL) after 24 h of inoculation of wheat florets by Fusarium graminearum. Statistical comparisons of the abundances of protein spots on the 2D-DIGE gels of contrasting NILs (fhb1+ NIL = Qfhb1 present; fhb1- NIL = Qfhb1 absent) enabled us to select 80 high-ranking differentially accumulated protein (DAP) spots. An additional evaluation confirmed that the DAP spots were specific to the spikelet from fhb1- NIL (50 spots), and fhb1+ NIL (seven spots). The proteomic data also suggest that the absence of Qfhb1 makes the fhb1- NIL vulnerable to Fusarium attack by constitutively impairing several mechanisms including sucrose homeostasis by enhancing starch synthesis from sucrose. In the absence of Qfhb1, Fusarium inoculations severely damaged photosynthetic machinery; altered the metabolism of carbohydrates, nitrogen and phenylpropanoids; disrupted the balance of proton gradients across relevant membranes; disturbed the homeostasis of many important signaling molecules induced the mobility of cellular repair; and reduced translational activities. These changes in the fhb1- NIL led to strong defense responses centered on the hypersensitive response (HSR), resulting in infected cells suicide and the consequent initiation of FHB development. Therefore, the results of this study suggest that Qfhb1 largely functions to either alleviate HSR or to manipulate the host cells to not respond to Fusarium infection.

2021 ◽  
Author(s):  
Xianrui Guo ◽  
Qinghua Shi ◽  
Jing Yuan ◽  
Mian Wang ◽  
Jing Wang ◽  
...  

AbstractFusarium head blight (FHB), caused by Fusarium species, seriously threaten global wheat production. Three wheat-Th.elongatum FHB resistant translocation lines have been developed and used for breeding. Transcriptomic analysis identified a derivative glutathione S-transferase transcript T26102, which was homologous to Fhb7 and induced dramatically by Fusarium graminearum. Homologs of Fhb7 were detected in several genera in Triticeae, including Thinopyrum, Elymus, Leymus, Pseudoroegeria and Roegeria. Several wheat-Thinopyrum translocation lines carrying Fhb7 remain susceptible to FHB, and transgenic plants overexpressing the T26102 on different backgrounds did not improve the FHB resistance. Taken as a whole, we show the application of the chromatin derived from diploid Thinopyrum elongatum successfully conferring wheat with high level FHB resistance independent of the Fhb7.One Sentence SummaryThinopyrum elongatum chromatin from 7EL was successfully applied to wheat FHB resistance breeding, but the resistant gene other than the reported Fhb7 remained unknown.


2018 ◽  
Vol 108 (6) ◽  
pp. 730-736 ◽  
Author(s):  
Yi He ◽  
Xu Zhang ◽  
Yu Zhang ◽  
Dawood Ahmad ◽  
Lei Wu ◽  
...  

Fusarium head blight (FHB) is a destructive fungal disease in wheat worldwide. Efforts have been carried out to combat this disease, and the pore-forming toxin-like (PFT) gene at the quantitative trait locus (QTL) Fhb1 was isolated and found to confer resistance to FHB in Sumai 3. In this study, we characterized PFT in 348 wheat accessions. Four haplotypes of PFT were identified. The wild haplotype of PFT had higher resistance than other haplotypes and explained 13.8% of phenotypic variation in FHB resistance by association analysis. PFT was highly expressed during early flowering and increased after Fusarium graminearum treatment in Sumai 3. Analysis of the 5′ flanking sequence of PFT predicted that the cis elements of the PFT promoter were related to hormones and biological defense responses. However, PFT existed not only in the FHB-resistant accessions but also in some susceptible accessions. These results suggested that FHB resistance in a diverse range of wheat genotypes is partially conditioned by PFT. The profiling of FHB resistance and the PFT locus in this large collection of wheat germplasm may prove helpful for incorporating FHB resistance into wheat breeding programs, although more work is needed to reveal the exact role of the QTL Fhb1 in conferring resistance to fungal spread.


2020 ◽  
pp. PHYTO-05-20-017
Author(s):  
Mingming Yang ◽  
Xianguo Wang ◽  
Jian Dong ◽  
Wanchun Zhao ◽  
Tariq Alam ◽  
...  

Fusarium head blight (FHB) is a devastating disease of wheat, causing yield losses and quality reduction as a result of mycotoxin production. In this study, iTRAQ (isobaric tags for relative and absolute quantification)- labeling-based mass spectrometry was employed to characterize the proteome in wheat cultivars Xinong 538 and Zhoumai 18 with contrasting levels of FHB resistance as a means to elucidate the molecular mechanisms contributing to FHB resistance. A total of 13,669 proteins were identified in the two cultivars 48 h after Fusarium graminearum inoculation. Among these, 2,505 unique proteins exclusively accumulated in Xinong 538 (resistant) and 887 proteins in Zhoumai 18 (susceptible). Gene Ontology enrichment analysis showed that most differentially accumulated proteins (DAPs) from both cultivars were assigned to the following categories: metabolic process, single-organism process, cellular process, and response to stimulus. Kyoto Encyclopedia of Genes and Genomes analysis showed that a greater number of proteins belonging to different metabolic pathways were identified in Xinong 538 compared with Zhoumai 18. Specifically, DAPs from the FHB-resistant cultivar Xinong 538 populated categories of metabolic pathways related to plant–pathogen interaction. These DAPs might play a critical role in defense responses exhibited by Xinong 538. DAPs from both genotypes were assigned to all wheat chromosomes except chromosome 6B, with approximately 30% mapping to wheat chromosomes 2B, 3B, 5B, and 5D. Twenty single nucleotide polymorphism markers, flanking DAPs on chromosomes 1B, 3B, 5B, and 6A, overlapped with the location of earlier mapped FHB-resistance quantitative trait loci. The data provide evidence for the involvement of several DAPs in the early stages of the FHB-resistance response in wheat; however, further functional characterization of candidate proteins is warranted.


2005 ◽  
Vol 18 (12) ◽  
pp. 1318-1324 ◽  
Author(s):  
Marc Lemmens ◽  
Uwe Scholz ◽  
Franz Berthiller ◽  
Chiara Dall'Asta ◽  
Andrea Koutnik ◽  
...  

We investigated the hypothesis that resistance to deoxynivalenol (DON) is a major resistance factor in the Fusarium head blight (FHB) resistance complex of wheat. Ninety-six double haploid lines from a cross between ‘CM-82036’ and ‘Remus’ were examined. The lines were tested for DON resistance after application of the toxin in the ear, and for resistances to initial infection and spread of FHB after artificial inoculation with Fusarium spp. Toxin application to flowering ears induced typical FHB symptoms. Quantitative trait locus (QTL) analyses detected one locus with a major effect on DON resistance (logarithm of odds = 53.1, R2 = 92.6). The DON resistance phenotype was closely associated with an important FHB resistance QTL, Qfhs.ndsu-3BS, which previously was identified as governing resistance to spread of symptoms in the ear. Resistance to the toxin was correlated with resistance to spread of FHB (r = 0.74, P < 0.001). In resistant wheat lines, the applied toxin was converted to DON-3-O-glucoside as the detoxification product. There was a close relation between the DON-3-glucoside/DON ratio and DON resistance in the toxintreated ears (R2 = 0.84). We conclude that resistance to DON is important in the FHB resistance complex and hypothesize that Qfhs.ndsu-3BS either encodes a DON-glucosyltransferase or regulates the expression of such an enzyme.


Plant Disease ◽  
2021 ◽  
Author(s):  
Rupesh Gaire ◽  
Clay Sneller ◽  
Gina Brown-Guedira ◽  
David A. Van Sanford ◽  
Mohsen Mohammadi ◽  
...  

Fusarium head blight (FHB) is a devastating disease of wheat and barley. In the US, a significant long-term investment in breeding FHB resistant cultivars began after the 1990s. However, to this date, no study has been performed to understand and monitor the rate of genetic progress in FHB resistance as a result of this investment. Using 20 years of data (1998 to 2018) from the Northern Uniform (NU) and Preliminarily Northern Uniform (PNU) winter wheat scab nurseries which consisted of 1068 genotypes originating from 9 different institutions, we studied the genetic trends in FHB resistance within the northern soft red winter wheat growing region using mixed model analyses. For the FHB resistance traits incidence, severity, Fusarium damaged kernels (FDK), and deoxynivalenol content, the rate of genetic gain in disease resistance was estimated to be 0.30 ± 0.1, 0.60 ± 0.09, 0.37 ± 0.11 points per year, and 0.11 ± 0.05 ppm per year, respectively. Among the five FHB resistance QTL assayed for test entries from 2012 to 2018, the frequencies of favorable alleles from Fhb 2DL Wuhan1 W14, Fhb Ernie 3Bc, and Fhb 5A Ning7840 was close to zero across the years. The frequency of the favorable at Fhb1 and Fhb 5A Ernie ranged from 0.08 to 0.33 and 0.06 to 0.20 respectively across years, and there was no trend in changes in allele frequencies over years. Overall, this study showed that substantial genetic progress has been made towards improving resistance to FHB. It is apparent that the current investment in public wheat breeding for FHB resistance is achieving results and will continue to play a vital role in reducing FHB levels in growers’ fields.


2006 ◽  
Vol 86 (3) ◽  
pp. 711-716 ◽  
Author(s):  
M. A. Matus-Cádiz ◽  
C. J. Pozniak ◽  
G. R. Hughes ◽  
P. Hucl

After the initial identification of microsatellites linked to economically important traits of interest, the additional investment to simplify the screening procedure for more routine use is of interest to plant breeders. The objective was to simplify an acrylamide gel based marker-assisted selection (MAS) method to facilitate high-through put screening for Qfhs.ndsu-3BS, a major quantitative trait locus carrying fusarium head blight (FHB) resistance in Sumai-3 wheat (Triticum aestivum L.). Method simplifications included incorporating the use of (1) 96-well DNA extractions, (2) multiplexed PCR reactions using microsatellite primers gwm493 and gwm533, and (3) agarose gels. Our modified FHB-MAS method was verified by screening six resistant (Sumai-3, ND2710, McVey, BacUp, HY644, and Alsen) and 52 susceptible parents and subsequently used to screen 5567 common wheat breeding lines developed from Sumai-3 derivatives. This simple and rapid method allows for the screening of 1000 lines per week, which can be used to skew segregating populations towards more resistant types and thereby advance primarily early and advanced generation lines that carry at least the major FHB QTL. Key words: PCR, Fusarium, microsatellites, gwm493, gwm533, Triticum


2020 ◽  
Vol 21 (12) ◽  
pp. 4497 ◽  
Author(s):  
Raman Dhariwal ◽  
Maria A. Henriquez ◽  
Colin Hiebert ◽  
Curt A. McCartney ◽  
Harpinder S. Randhawa

Fusarium head blight (FHB) is one of the most devastating wheat disease due to its direct detrimental effects on grain-yield, quality and marketability. Resistant cultivars offer the most effective approach to manage FHB; however, the lack of different resistance resources is still a major bottleneck for wheat breeding programs. To identify and dissect FHB resistance, a doubled haploid wheat population produced from the Canadian spring wheat cvs AAC Innova and AAC Tenacious was phenotyped for FHB response variables incidence and severity, visual rating index (VRI), deoxynivalenol (DON) content, and agronomic traits days to anthesis (DTA) and plant height (PHT), followed by single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) marker genotyping. A high-density map was constructed consisting of 10,328 markers, mapped on all 21 chromosomes with a map density of 0.35 cM/marker. Together, two major quantitative trait loci for FHB resistance were identified on chromosome 2D from AAC Tenacious; one of these loci on 2DS also colocated with loci for DTA and PHT. Another major locus for PHT, which cosegregates with locus for low DON, was also identified along with many minor and epistatic loci. QTL identified from AAC Tenacious may be useful to pyramid FHB resistance.


2020 ◽  
Vol 100 (2) ◽  
pp. 156-174
Author(s):  
S. Berraies ◽  
R.E. Knox ◽  
R.M. DePauw ◽  
F.R. Clarke ◽  
A.R. Martin ◽  
...  

Several quantitative trait loci (QTL) have been identified for Fusarium head blight (FHB) resistance in the cultivar Sumai 3. Wheat breeders need to know which Sumai 3 loci are present in derived lines used as parents for effective marker-assisted selection for genetic improvement. This study was conducted to identify the loci in Sumai 3 derived parents that contribute FHB resistance in breeding populations. Three doubled haploid (DH) populations utilizing Sumai 3 derived parents, ND3085, ND744, and Alsen, were evaluated during 2007 and 2008 in FHB nurseries near Carman, MB, Ottawa, ON and Charlottetown, PE. The percentage of incidence, severity, Fusarium-damaged kernels (FDK), and deoxynivalenol (DON) accumulation were measured, and FHB index calculated. DNA markers at six FHB resistance loci detected in Sumai 3 were evaluated on the populations. For each trait, a t test was applied to means of observations pooled by parental type of each marker to determine which loci contributed to resistance. The alleles at 3BS and 5AS most frequently contributed to Type I and Type II FHB resistance, as well as to reduced FDK and DON in all three populations. Markers revealed resistance on 3BS and 5AS in Alsen, ND3085, and ND744, on 3BSc, 4D, and 6BS in ND744, on 4D in ND3085, and on 6BS in Alsen. In some environments, the susceptible parent Infinity contributed minor QTL on 2D, 3BSc, and 6BS. Likewise, Helios contributed minor QTL on 5AS and 6BS.


Author(s):  
Sydney Wallace ◽  
Bhavit Chhabra ◽  
Yanhong Dong ◽  
Xuefeng Ma ◽  
Gary Coleman ◽  
...  

Fusarium Head Blight (FHB) is a destructive disease affecting the grain yield and quality of wheat, barley, rye and triticale. Developing varieties with genetic resistance is integral to successfully managing FHB. However, significant knowledge gap exists in the genetic diversity present in triticale for FHB resistance. This information is critical for breeding new varieties of triticale as its production continues to increase. In the present study, a set of 298 winter triticale accessions from a worldwide collection were screened for their type-2 FHB resistance in an artificially inoculated misted nursery with high levels of inoculum density. Most of the triticale accessions were susceptible to FHB, and only 8% of accessions showed resistance in the field nursery screening. The resistant accessions identified in the nursery screening were selected and further screened for three years in greenhouse conditions. Seven accessions were found to show robust FHB resistance over the three years of greenhouse testing. Thirteen accessions showed significantly lower levels of Deoxynivalenol accumulation when compared to the susceptible triticale control. The accessions identified in the study will be useful in triticale and wheat breeding programs for enhancing FHB resistance and reducing DON accumulation.


2021 ◽  
Author(s):  
Hui Wang ◽  
Shuwei Cheng ◽  
Yue Shi ◽  
Shuxin Zhang ◽  
Wei Yan ◽  
...  

Abstract Background: Partial amphiploids created by crossing octoploid tritelytrigia(2n=8x=56, AABBDDEE) and Thinopyrum intermedium (2n=6x=42, StStJJJSJS) are important intermediates in wheat breeding because of their resistance to major wheat diseases. We examined the chromosome compositions of five wheat-Th. intermedium partial amphiploids using GISH and multicolor-FISH. Results: The result revealed that five lines had 10-14 J-genome chromosomes from Th. intermedium and 42 common wheat chromosomes, using the J-genomic DNA from Th. bessarabicum as GISH probe and the oligo probes pAs1-1, pAs1-3, AFA-4, (GAA) 10, and pSc119.2-1 as FISH probe. Five lines resembled their parent octoploid tritelytrigia (2n=8x=56, AABBDDEE) but had higher protein contents. Protein contents of two lines HS2-2 and HS2-5 were up to more than 20%. Evaluation of Fusarium head blight (FHB) resistance revealed that the percent of symptomatic spikelets (PSS) of these lines were below 30%. Lines HS2-2, HS2-4, HS2-5, and HS2-16 were less than 20%. Line HS2-5 with 14 J-genome chromosomes from Th. intermedium showed the best disease resistance, with PSS values of 10.8% and 16.6% in 2016 and 2017, respectively. Conclusions: New wheat-Th. intermedium amphiploids with the J-genome chromosomes were identified and can be considered as a valuable source of FHB resistance in wheat breeding.


Sign in / Sign up

Export Citation Format

Share Document