scholarly journals The Two-dimensional and Three-dimensional T2 Weighted Imaging-based Radiomic Signatures Selected for the Preoperative Discrimination of Ovarian Borderline Tumors and Epithelial Cancer.

Author(s):  
Xuefen Liu ◽  
Tianping Wang ◽  
Guofu Zhang ◽  
Keqin Hua ◽  
Hua Jiang ◽  
...  

Abstract Background: Accurate discrimination between ovarian borderline tumors (BOTs) and malignancies with imaging play an important role in management.Purpose: To evaluate the ability of T2-weighted imaging (T2WI)-based radiomics to discriminate ovarian borderline tumors (BOTs) from malignancies based on two-dimensional (2D) and three-dimensional (3D) lesion segmentation methods.Methods: A total of 95 patients with pathologically proven ovarian BOTs and 101 patients with malignancies were retrospectively included in this study. We evaluated the diagnostic performance of the signatures derived from T2WI-based radiomics in their ability to differentiate between BOTs and malignancies and compared the performance differences in the 2D and 3D segmentation models. The least absolute shrinkage and selection operator method (LASSO) was used for radiomics feature selection and machine learning processing.Results: The radiomics score between BOTs and malignancies in four types of selected T2WI-based radiomics models differed significantly at the statistical level (p < 0.0001). For the classification between BOTs and malignant masses, the 2D and 3D coronal T2WI-based radiomics models yielded accuracy values of 0.79 and 0.83 in the testing group, respectively; the 2D and 3D sagittal fat-suppressed (fs) T2WI-based radiomics models yielded an accuracy of 0.78 and 0.99, respectively.Conclusion: Our results suggest that T2WI-based radiomic features were highly correlated with ovarian tumor subtype classification. 3D-sagittal MRI radiomics features may help clinicians differentiate ovarian BOTs from malignancies with high accuracy (ACC).

2020 ◽  
Author(s):  
Xuefen Liu ◽  
Tianping Wang ◽  
Guofu Zhang ◽  
Keqin Hua ◽  
Shaofeng Duan ◽  
...  

Abstract Background: Accurate discrimination between ovarian borderline tumors (BOTs) and malignancies with imaging play an important role in management.Methods: A total of 95 patients with pathologically proven ovarian BOTs and 101 patients with malignancies were retrospectively included in this study. We evaluated the diagnostic performance of the signatures derived from T2WI-based radiomics in their ability to differentiate between BOTs and malignancies and compared the performance differences in the 2D and 3D segmentation models. The least absolute shrinkage and selection operator method (LASSO) was used for radiomics feature selection and machine learning processing.Results: The radiomics score between BOTs and malignancies in four types of selected T2WI-based radiomics models differed significantly at the statistical level (p < 0.0001). For the classification between BOTs and malignant masses, the 2D and 3D coronal T2WI-based radiomics models yielded accuracy values of 0.79 and 0.83 in the testing group, respectively; the 2D and 3D sagittal fat-suppressed (fs) T2WI-based radiomics models yielded an accuracy of 0.78 and 0.99, respectively.Conclusion: Our results suggest that T2WI-based radiomic features were highly correlated with ovarian tumor subtype classification. 3D-sagittal MRI radiomics features may help clinicians differentiate ovarian BOTs from malignancies with high accuracy (ACC).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kiyoshi Masuyama ◽  
Tomoaki Higo ◽  
Jong-Kook Lee ◽  
Ryohei Matsuura ◽  
Ian Jones ◽  
...  

AbstractIn contrast to hypertrophic cardiomyopathy, there has been reported no specific pattern of cardiomyocyte array in dilated cardiomyopathy (DCM), partially because lack of alignment assessment in a three-dimensional (3D) manner. Here we have established a novel method to evaluate cardiomyocyte alignment in 3D using intravital heart imaging and demonstrated homogeneous alignment in DCM mice. Whilst cardiomyocytes of control mice changed their alignment by every layer in 3D and position twistedly even in a single layer, termed myocyte twist, cardiomyocytes of DCM mice aligned homogeneously both in two-dimensional (2D) and in 3D and lost myocyte twist. Manipulation of cultured cardiomyocyte toward homogeneously aligned increased their contractility, suggesting that homogeneous alignment in DCM mice is due to a sort of alignment remodelling as a way to compensate cardiac dysfunction. Our findings provide the first intravital evidence of cardiomyocyte alignment and will bring new insights into understanding the mechanism of heart failure.


2021 ◽  
Vol 7 (3) ◽  
pp. 209-219
Author(s):  
Iris J Holzleitner ◽  
Alex L Jones ◽  
Kieran J O’Shea ◽  
Rachel Cassar ◽  
Vanessa Fasolt ◽  
...  

Abstract Objectives A large literature exists investigating the extent to which physical characteristics (e.g., strength, weight, and height) can be accurately assessed from face images. While most of these studies have employed two-dimensional (2D) face images as stimuli, some recent studies have used three-dimensional (3D) face images because they may contain cues not visible in 2D face images. As equipment required for 3D face images is considerably more expensive than that required for 2D face images, we here investigated how perceptual ratings of physical characteristics from 2D and 3D face images compare. Methods We tested whether 3D face images capture cues of strength, weight, and height better than 2D face images do by directly comparing the accuracy of strength, weight, and height ratings of 182 2D and 3D face images taken simultaneously. Strength, height and weight were rated by 66, 59 and 52 raters respectively, who viewed both 2D and 3D images. Results In line with previous studies, we found that weight and height can be judged somewhat accurately from faces; contrary to previous research, we found that people were relatively inaccurate at assessing strength. We found no evidence that physical characteristics could be judged more accurately from 3D than 2D images. Conclusion Our results suggest physical characteristics are perceived with similar accuracy from 2D and 3D face images. They also suggest that the substantial costs associated with collecting 3D face scans may not be justified for research on the accuracy of facial judgments of physical characteristics.


2021 ◽  
pp. 021849232110304
Author(s):  
Mehrnoush Toufan ◽  
Zahra Jabbary ◽  
Naser Khezerlou aghdam

Background To quantify valvular morphological assessment, some two-dimensional (2D) and three-dimensional (3D) scoring systems have been developed to target the patients for balloon mitral valvuloplasty; however, each scoring system has some potential limitations. To achieve the best scoring system with the most features and the least restrictions, it is necessary to check the degree of overlap of these systems. Also the factors related to the accuracy of these systems should be studied. We aimed to determine the correlation between the 2D Wilkins and real-time transesophageal three-dimensional (RT3D-TEE) scoring systems. Methods This cross-sectional study was performed on 156 patients with moderate to severe mitral stenosis who were candidates for percutaneous balloon valvuloplasty. To morphologic assessment of mitral valve, patients were examined by 2D-transthoracic echocardiography and RT3D-TEE techniques on the same day. Results A strong association was found between total Wilkins and total RT3D-TEE scores (r = 0.809, p < 0.001). The mean mitral valve area assessed by the 2D and 3D was 1.07 ± 0.25 and 1.03 ± 0.26, respectively, indicating a mean difference of 0.037 cm2 (p = 0.001). We found a strong correlation between the values of mitral valve area assessed by 2D and 3D techniques (r = 0.846, p < 0.001). Conclusion There is a high correlation between the two scoring systems in terms of evaluating dominant morphological features. Partially, mitral valve area overestimation in the 2D-transthoracic echocardiography and its inability to assess commissural involvement as well as its dependence on patient age were exceptions in this study.


2020 ◽  
Author(s):  
Thaksen Jadhav ◽  
Yuan Fang ◽  
Cheng-Hao Liu ◽  
Afshin Dadvand ◽  
Ehsan Hamzehpoor ◽  
...  

We report the first transformation between crystalline vinylene-linked two-dimensional (2D) polymers and crystalline cyclobutane-linked three-dimensional (3D) polymers. Specifically, absorption-edge irradiation of the 2D poly(arylenevinylene) covalent organic frameworks (COFs) results in topological [2+2] cycloaddition cross-linking the π-stacked layers in 3D COFs. The reaction is reversible and heating to 200°C leads to a cycloreversion while retaining the COF crystallinity. The resulting difference in connectivity is manifested in the change of mechanical and electronic properties, including exfoliation, blue-shifted UV-Vis absorption, altered luminescence, modified band structure and different acid-doping behavior. The Li-impregnated 2D and 3D COFs show a significant ion conductivity of 1.8×10<sup>−4</sup> S/cm and 3.5×10<sup>−5</sup> S/cm, respectively. Even higher room temperature proton conductivity of 1.7×10<sup>-2</sup> S/cm and 2.2×10<sup>-3</sup> S/cm was found for H<sub>2</sub>SO<sub>4</sub>-treated 2D and 3D COFs, respectively.


2021 ◽  
Vol 8 (12) ◽  
pp. 171
Author(s):  
Juan Manuel Monteagudo Ruiz ◽  
José Luis Zamorano Gómez

Mitral stenosis is an important cause of heart valve disease globally. Echocardiography is the main imaging modality used to diagnose and assess the severity and hemodynamic consequences of mitral stenosis as well as valve morphology. Transthoracic echocardiography (TTE) is sufficient for the management of most patients. The focus of this review is the role of current two-dimensional (2D) and three-dimensional (3D) echocardiographic imaging for the evaluation of mitral stenosis.


2021 ◽  

Background: Mitral valve area (MVA) is technically measured using both two-dimensional (2D) planimetry and three dimensional multi planar reconstruction (3D-MPR) techniques; however, studies have always overestimated MVA using the former method. Objectives: This study aimed to assess the correlation between MVA assessed by 2D and 3D techniques and the impact of left atrial volume index (LAVI) on the discrepancy between MVA assessed by two echocardiography techniques. Methods: The data of 75 patients with moderate to severe mitral stenosis assessed by both 2D planimetry and 3D-MPR techniques were retrospectively reviewed. Clinical and echocardiographic variables were evaluated. Left atrial (LA) volume was determined using biplane area-length method. Results: The mean MVA assessed by the 2D and 3D techniques was 1.03±0.24 cm2 and 0.99±0.25 cm2 with a mean discrepancy of 0.04±0.15 cm2, respectively. A strong association was observed between the MVA values assessed by 2D planimetry and 3D-MPR methods (r coefficient = 0.817, P<0.001) indicating a slight discrepancy between the two techniques in assessing MVA measure. The pointed discrepancy was affected by none of the baseline characteristics and LAVI value. There was an adverse association between LAVI value and MVA measured by both 2D planimetry (r coefficient = -0.291, P= 0.011) and 3D-MPR (r coefficient=-0.260, P=0.024). Conclusion: In contrast to the left atrial dimension, the discrepancy in MVA values assessed by 2D planimetry and 3D-MPR is not influenced by LAVI adjusted for baseline parameters.


2020 ◽  
Vol 10 (14) ◽  
pp. 4775
Author(s):  
Sara Bonomi ◽  
Vincenza Armenise ◽  
Gianluca Accorsi ◽  
Silvia Colella ◽  
Aurora Rizzo ◽  
...  

The ball-milling of materials is a mechanical grinding method that has different effects on treated materials, and can be used for the direct synthesis of organometal halide perovskite (OHP) crystals. Herein, the effect of such a process, extended over a large temporal window, is related to the properties of referential three-dimensional (3D) MAPbI3 (MA = methylammonium) and two-dimensional (2D) PEA2PbI4 (PEA = phenylethylammonium) perovskite crystals. For both 2D and 3D systems, the ball-milling induces a reduction of the crystallite dimension, accompanied by a worsening of the overall crystallinity, but without any sign of amorphization. For MAPbI3, an intriguing room temperature structural transition, from tetragonal to cubic, is observed. The processing in both cases impacts on the morphology, with a reduction of the crystal shape quality connected to the particles’ agglomeration tendency. All these effects translate to a “blue shift” of the absorption and emission features, suggesting the use of this technique to modulate the 3D and 2D OHPs’ properties.


2020 ◽  
pp. 155335062097254
Author(s):  
Omar Abbassi ◽  
Krashna Patel ◽  
Naga Venkatesh Jayanthi

Background. Completely minimally invasive esophagectomy (CMIE) has been associated with reduced morbidity compared to open esophagectomy in the treatment of esophageal cancer. Three-dimensional (3D) vision can enhance depth perception during minimally invasive surgery when compared to two-dimensional (2D) vision. We aimed to compare outcomes from 2-stage CMIEs when performed in 2D vs 3D. Method. All consecutive 2-stage CMIEs performed for esophageal or gastroesophageal junctional cancer at a single-centre between 2016 and 2018 were identified from a prospectively maintained database. All operations were completed in either 2D or 3D. All esophagogastric anastomoses were hand-sewn thoracoscopically. Intraoperative and postoperative clinical parameters were compared between 2D and 3D CMIE. Results. Overall, 98 patients underwent a 2-stage CMIE, of which 59 (60.2%) were in 2D and 39 (39.8%) in 3D. Median operative blood loss was less in the 3D group compared to the 2D group (283 mls vs 409 mls, P = .016). A higher number of lymph nodes were retrieved from 3D CMIE (30 vs 25, P = .010). The median duration of surgery was 407 minutes (interquartile ranges (IQR): 358-472 minutes) and 426 minutes (IQR: 369-509 minutes) when performed in 2D and 3D, respectively ( P = .162). There were no significant intergroup differences in 30-day postoperative complications, short-term mortality, and hospital stay. Conclusion. We report reduced blood loss and higher lymph node yield when performing 3D CMIE than 2D CMIE. Other intraoperative and postoperative clinical outcomes were similar in both groups. A randomized controlled trial is needed to validate these findings of superior outcomes from CMIE performed in 3D over 2D.


2020 ◽  
Vol 494 (2) ◽  
pp. 1826-1837 ◽  
Author(s):  
A de Lorenzo-Cáceres ◽  
J Méndez-Abreu ◽  
B Thorne ◽  
L Costantin

ABSTRACT The intrinsic photometric properties of inner and outer stellar bars within 17 double-barred galaxies are thoroughly studied through a photometric analysis consisting of (i) two-dimensional (2D) multicomponent photometric decompositions, and (ii) three-dimensional (3D) statistical deprojections for measuring the thickening of bars, thus retrieving their 3D shape. The results are compared with previous measurements obtained with the widely used analysis of integrated light. Large-scale bars in single- and double-barred systems show similar sizes, and inner bars may be longer than outer bars in different galaxies. We find two distinct groups of inner bars attending to their in-plane length and ellipticity, resulting in a bimodal behaviour for the inner/outer bar length ratio. Such bimodality is related neither to the properties of the host galaxy nor the dominant bulge, and it does not show a counterpart in the dimension off the disc plane. The group of long inner bars lays at the lower end of the outer bar length versus ellipticity correlation, whereas the short inner bars are out of that relation. We suggest that this behaviour could be due to either a different nature of the inner discs from which the inner bars are dynamically formed or a different assembly stage for the inner bars. This last possibility would imply that the dynamical assembly of inner bars is a slow process taking several Gyr to happen. We have also explored whether all large-scale bars are prone to develop an inner bar at some stage of their lives, possibility we cannot fully confirm or discard.


Sign in / Sign up

Export Citation Format

Share Document