scholarly journals Characterization of the Mechanism of Action of Lanraplenib, a Novel Spleen Tyrosine Kinase Inhibitor, in Models of Lupus Nephritis

2021 ◽  
Author(s):  
Christopher W. Pohlmeyer ◽  
Ching Shang ◽  
Pei Han ◽  
Zhi-Hua Cui ◽  
Randall M. Jones ◽  
...  

Abstract Background B cells are critical mediators of systemic lupus erythematosus (SLE) and lupus nephritis (LN), and antinuclear antibodies can be found in the serum of approximately 98% of patients with SLE. Spleen tyrosine kinase (SYK) is a nonreceptor tyrosine kinase that mediates signaling from immunoreceptors, including the B cell receptor. Active, phosphorylated SYK has been observed in tissues from patients with SLE or cutaneous lupus erythematosus, and its inhibition is hypothesized to ameliorate disease pathogenesis. We sought to evaluate the efficacy and characterize the mechanism of action of lanraplenib, a selective oral SYK inhibitor, in the New Zealand black/white (NZB/W) murine model of SLE and LN.Methods Lanraplenib was evaluated for inhibition of primary human B cell functions in vitro. Furthermore, the effect of SYK inhibition on ameliorating LN-like disease in vivo was determined by treating NZB/W mice with lanraplenib, cyclophosphamide, or a vehicle control. Glomerulopathy and immunoglobulin G (IgG) deposition were quantified in kidneys. The concentration of proinflammatory cytokines was measured in serum. Splenocytes were analyzed by flow cytometry for B cell maturation and T cell memory maturation, and the presence of T follicular helper and dendritic cells. Results In human B cells in vitro, lanraplenib inhibited B cell activating factor-mediated survival as well as activation, maturation, and immunoglobulin M production. Treatment of NZB/W mice with lanraplenib improved overall survival, prevented the development of proteinuria, and reduced blood urea nitrogen concentrations. Kidney morphology was significantly preserved by treatment with lanraplenib as measured by glomerular diameter, protein cast severity, interstitial inflammation, vasculitis, and frequency of glomerular crescents; treatment with lanraplenib reduced glomerular IgG deposition. Mice treated with lanraplenib had reduced concentrations of serum proinflammatory cytokines. Lanraplenib blocked disease-driven B cell maturation and T cell memory maturation in the spleen.Conclusions Lanraplenib blocked the progression of LN-like disease in NZB/W mice. Human in vitro and murine in vivo data suggest that lanraplenib may be efficacious in preventing disease progression in patients with LN at least in part by inhibiting B cell maturation. These data provide additional rationale for the use of lanraplenib in the treatment of SLE and LN.

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Christopher W. Pohlmeyer ◽  
Ching Shang ◽  
Pei Han ◽  
Zhi-Hua Cui ◽  
Randall M. Jones ◽  
...  

Abstract Background B cells are critical mediators of systemic lupus erythematosus (SLE) and lupus nephritis (LN), and antinuclear antibodies can be found in the serum of approximately 98% of patients with SLE. Spleen tyrosine kinase (SYK) is a nonreceptor tyrosine kinase that mediates signaling from immunoreceptors, including the B cell receptor. Active, phosphorylated SYK has been observed in tissues from patients with SLE or cutaneous lupus erythematosus, and its inhibition is hypothesized to ameliorate disease pathogenesis. We sought to evaluate the efficacy and characterize the mechanism of action of lanraplenib, a selective oral SYK inhibitor, in the New Zealand black/white (NZB/W) murine model of SLE and LN. Methods Lanraplenib was evaluated for inhibition of primary human B cell functions in vitro. Furthermore, the effect of SYK inhibition on ameliorating LN-like disease in vivo was determined by treating NZB/W mice with lanraplenib, cyclophosphamide, or a vehicle control. Glomerulopathy and immunoglobulin G (IgG) deposition were quantified in kidneys. The concentration of proinflammatory cytokines was measured in serum. Splenocytes were analyzed by flow cytometry for B cell maturation and T cell memory maturation, and the presence of T follicular helper and dendritic cells. Results In human B cells in vitro, lanraplenib inhibited B cell activating factor-mediated survival as well as activation, maturation, and immunoglobulin M production. Treatment of NZB/W mice with lanraplenib improved overall survival, prevented the development of proteinuria, and reduced blood urea nitrogen concentrations. Kidney morphology was significantly preserved by treatment with lanraplenib as measured by glomerular diameter, protein cast severity, interstitial inflammation, vasculitis, and frequency of glomerular crescents; treatment with lanraplenib reduced glomerular IgG deposition. Mice treated with lanraplenib had reduced concentrations of serum proinflammatory cytokines. Lanraplenib blocked disease-driven B cell maturation and T cell memory maturation in the spleen. Conclusions Lanraplenib blocked the progression of LN-like disease in NZB/W mice. Human in vitro and murine in vivo data suggest that lanraplenib may be efficacious in preventing disease progression in patients with LN at least in part by inhibiting B cell maturation. These data provide additional rationale for the use of lanraplenib in the treatment of SLE and LN.


2020 ◽  
Author(s):  
Christopher W. Pohlmeyer ◽  
Ching Shang ◽  
Pei Han ◽  
Zhi-Hua Cui ◽  
Randall M. Jones ◽  
...  

Abstract Background B cells are critical mediators of systemic lupus erythematosus (SLE) and lupus nephritis (LN), and antinuclear antibodies can be found in the serum of approximately 98% of patients with SLE. Spleen tyrosine kinase (SYK) is a nonreceptor tyrosine kinase that mediates signaling from immunoreceptors, including the B cell receptor. Active, phosphorylated SYK has been observed in tissues from patients with SLE or cutaneous lupus erythematosus, and its inhibition is hypothesized to ameliorate disease pathogenesis. We sought to evaluate the efficacy and characterize the mechanism of action of lanraplenib, a selective oral SYK inhibitor, in the New Zealand black/white (NZB/W) murine model of SLE and LN. Methods Lanraplenib was evaluated for inhibition of primary human B cell functions in vitro. Furthermore, the effect of SYK inhibition on ameliorating LN-like disease in vivo was determined by treating diseased NZB/W mice with lanraplenib, cyclophosphamide, or a vehicle control. Glomerulopathy and immunoglobulin G (IgG) deposition were quantified in kidneys. The concentration of proinflammatory cytokines was measured in serum. Splenocytes were analyzed by flow cytometry for B cell maturation and T cell memory maturation, and the presence of T follicular helper and dendritic cells. Results In human B cells in vitro, lanraplenib inhibited B cell activating factor-mediated survival as well as activation, maturation, and immunoglobulin M production. Treatment of NZB/W mice with lanraplenib improved overall survival, prevented the development of proteinuria, and reduced blood urea nitrogen concentrations. Kidney morphology was significantly preserved by treatment with lanraplenib as measured by glomerular diameter, protein cast severity, interstitial inflammation, vasculitis, and frequency of glomerular crescents; treatment with lanraplenib reduced glomerular IgG deposition. Mice treated with lanraplenib had reduced concentrations of serum proinflammatory cytokines. Lanraplenib blocked disease-driven B cell maturation and T cell memory maturation in the spleen. Conclusions Lanraplenib blocked the progression of LN-like disease in NZB/W mice. Human in vitro and murine in vivo data suggest that lanraplenib may be efficacious in preventing disease progression in patients with LN at least in part by inhibiting B cell maturation. These data provide additional rationale for the use of lanraplenib in the treatment of SLE and LN.


2020 ◽  
Author(s):  
Christopher W. Pohlmeyer ◽  
Ching Shang ◽  
Pei Han ◽  
Zhi-Hua Cui ◽  
Randall M. Jones ◽  
...  

Abstract BackgroundB cells are critical mediators of systemic lupus erythematosus (SLE) and lupus nephritis (LN), and antinuclear antibodies can be found in the serum of approximately 98% of patients with SLE. Spleen tyrosine kinase (SYK) is a nonreceptor tyrosine kinase that mediates signaling from immunoreceptors, including the B cell receptor. Active, phosphorylated SYK has been observed in tissues from patients with SLE or cutaneous lupus erythematosus, and its inhibition is hypothesized to ameliorate disease pathogenesis. We sought to evaluate the efficacy and characterize the mechanism of action of lanraplenib, a selective oral SYK inhibitor, in the New Zealand black/white (NZB/W) murine model of SLE and LN.MethodsLanraplenib was evaluated for inhibition of primary human B cell functions in vitro. Furthermore, the effect of SYK inhibition on ameliorating LN-like disease in vivo was determined by treating NZB/W mice with lanraplenib, cyclophosphamide, or a vehicle control. Glomerulopathy and immunoglobulin G (IgG) deposition were quantified in kidneys. The concentration of proinflammatory cytokines was measured in serum. Splenocytes were analyzed by flow cytometry for B cell maturation and T cell memory maturation, and the presence of T follicular helper and dendritic cells.ResultsIn human B cells in vitro, lanraplenib inhibited B cell activating factor-mediated survival as well as activation, maturation, and immunoglobulin M production. Treatment of NZB/W mice with lanraplenib improved overall survival, prevented the development of proteinuria, and reduced blood urea nitrogen concentrations. Kidney morphology was significantly preserved by treatment with lanraplenib as measured by glomerular diameter, protein cast severity, interstitial inflammation, vasculitis, and frequency of glomerular crescents; treatment with lanraplenib reduced glomerular IgG deposition. Mice treated with lanraplenib had reduced concentrations of serum proinflammatory cytokines. Lanraplenib blocked disease-driven B cell maturation and T cell memory maturation in the spleen.ConclusionsLanraplenib blocked the progression of LN-like disease in NZB/W mice. Human in vitro and murine in vivo data suggest that lanraplenib may be efficacious in preventing disease progression in patients with LN at least in part by inhibiting B cell maturation. These data provide additional rationale for the use of lanraplenib in the treatment of SLE and LN.


Blood ◽  
2020 ◽  
Vol 136 (2) ◽  
pp. 210-223 ◽  
Author(s):  
Eun Ji Gang ◽  
Hye Na Kim ◽  
Yao-Te Hsieh ◽  
Yongsheng Ruan ◽  
Heather A. Ogana ◽  
...  

Abstract Resistance to multimodal chemotherapy continues to limit the prognosis of acute lymphoblastic leukemia (ALL). This occurs in part through a process called adhesion-mediated drug resistance, which depends on ALL cell adhesion to the stroma through adhesion molecules, including integrins. Integrin α6 has been implicated in minimal residual disease in ALL and in the migration of ALL cells to the central nervous system. However, it has not been evaluated in the context of chemotherapeutic resistance. Here, we show that the anti-human α6-blocking Ab P5G10 induces apoptosis in primary ALL cells in vitro and sensitizes primary ALL cells to chemotherapy or tyrosine kinase inhibition in vitro and in vivo. We further analyzed the underlying mechanism of α6-associated apoptosis using a conditional knockout model of α6 in murine BCR-ABL1+ B-cell ALL cells and showed that α6-deficient ALL cells underwent apoptosis. In vivo deletion of α6 in combination with tyrosine kinase inhibitor (TKI) treatment was more effective in eradicating ALL than treatment with a TKI (nilotinib) alone. Proteomic analysis revealed that α6 deletion in murine ALL was associated with changes in Src signaling, including the upregulation of phosphorylated Lyn (pTyr507) and Fyn (pTyr530). Thus, our data support α6 as a novel therapeutic target for ALL.


Hematology ◽  
2011 ◽  
Vol 2011 (1) ◽  
pp. 96-103 ◽  
Author(s):  
Jan A. Burger

Abstract Intrinsic factors such as genetic lesions, anti-apoptotic proteins, and aberrant signaling networks within leukemia cells have long been the main focus of chronic lymphocytic leukemia (CLL) research. However, over the past decade, it became increasingly clear that external signals from the leukemia microenvironment make pivotal contributions to disease progression in CLL and other B-cell malignancies. Consequently, increasing emphasis is now placed on exploring and targeting the CLL microenvironment. This review highlights critical cellular and molecular pathways of CLL-microenvironment cross-talk. In vitro and in vivo models for studying the CLL microenvironment are discussed, along with their use in searching for therapeutic targets and in drug testing. Clinically, CXCR4 antagonists and small-molecule antagonists of B cell receptor (BCR)-associated kinases (spleen tyrosine kinase [Syk], Bruton's tyrosine kinase [Btk], and PI3Kδ) are the most advanced drugs for targeting specific interactions between CLL cells and the miocroenvironment. Preclinical and first clinical evidence suggests that high-risk CLL patients can particularly benefit from these alternative agents. These findings indicate that interplay between leukemia-inherent and environmental factors, nature and nurture determines disease progression in CLL.


1985 ◽  
Vol 161 (4) ◽  
pp. 816-831 ◽  
Author(s):  
S Raychaudhuri ◽  
M P Cancro

The cellular mechanism and genetic restriction of neonatally induced HA-specific suppressor T (Ts) cells have been examined. The in vivo effect of these Ts cells on antibody production, primary B cell proliferation, B cell surface marker changes, and helper T (Th) cell priming during primary responses to HA have been determined. The results indicate that, although antigen-induced B cell proliferative responses and surface marker changes occur in the presence of Ts cells, differentiation to Ig secretion, and long-lived memory B cell production are prevented. Further, antigen-specific Th cell priming is completely ablated by Ts cells, suggesting that Ts act by preventing the delivery of Th signals required for both the later stages of primary B cell maturation, and the formation of memory B cell populations. Finally, in vivo cell mixing experiments using congenic mice indicate that this Ts-Th interaction is restricted by loci on mouse chromosome 12.


Blood ◽  
2017 ◽  
Vol 129 (13) ◽  
pp. 1768-1778 ◽  
Author(s):  
Sophia Gayle ◽  
Sean Landrette ◽  
Neil Beeharry ◽  
Chris Conrad ◽  
Marylens Hernandez ◽  
...  

Key Points Apilimod has broad anticancer activity in vitro and in vivo across all subtypes of B-NHL. Apilimod induces B-NHL cytotoxicity through a unique mechanism of action that involves the disruption of lysosomal function.


Author(s):  
Yvonne Sundström ◽  
Filip Bergqvist ◽  
Michael Sundström ◽  
Elena Ossipova ◽  
Johan Lengqvist ◽  
...  

2020 ◽  
Vol 218 (2) ◽  
Author(s):  
Begüm Alankus ◽  
Veronika Ecker ◽  
Nathalie Vahl ◽  
Martina Braun ◽  
Wilko Weichert ◽  
...  

Clinical evidence suggests alterations in receptor activator of NF-κB (RANK) signaling are key contributors to B cell autoimmunity and malignancy, but the pathophysiological consequences of aberrant B cell–intrinsic RANK signaling remain unknown. We generated mice that express a human lymphoma–derived, hyperactive RANKK240E variant in B lymphocytes in vivo. Forced RANK signaling disrupted B cell tolerance and induced a fully penetrant systemic lupus erythematosus–like disease in addition to the development of chronic lymphocytic leukemia (CLL). Importantly, RANKK240E transgenic CLL cells as well as CLL cells of independent murine and of human origin depend on microenvironmental RANK ligand (RANKL) for tumor cell survival. Consequently, inhibition of the RANKL–RANK axis with anti-RANKL antibodies killed murine and human CLL cells in vitro and in vivo. These results establish pathological B cell–intrinsic RANK signaling as a potential driver of autoimmunity and B cell malignancy, and they suggest the exploitation of clinically available anti-RANKL compounds for CLL treatment.


Sign in / Sign up

Export Citation Format

Share Document