scholarly journals Pathological RANK signaling in B cells drives autoimmunity and chronic lymphocytic leukemia

2020 ◽  
Vol 218 (2) ◽  
Author(s):  
Begüm Alankus ◽  
Veronika Ecker ◽  
Nathalie Vahl ◽  
Martina Braun ◽  
Wilko Weichert ◽  
...  

Clinical evidence suggests alterations in receptor activator of NF-κB (RANK) signaling are key contributors to B cell autoimmunity and malignancy, but the pathophysiological consequences of aberrant B cell–intrinsic RANK signaling remain unknown. We generated mice that express a human lymphoma–derived, hyperactive RANKK240E variant in B lymphocytes in vivo. Forced RANK signaling disrupted B cell tolerance and induced a fully penetrant systemic lupus erythematosus–like disease in addition to the development of chronic lymphocytic leukemia (CLL). Importantly, RANKK240E transgenic CLL cells as well as CLL cells of independent murine and of human origin depend on microenvironmental RANK ligand (RANKL) for tumor cell survival. Consequently, inhibition of the RANKL–RANK axis with anti-RANKL antibodies killed murine and human CLL cells in vitro and in vivo. These results establish pathological B cell–intrinsic RANK signaling as a potential driver of autoimmunity and B cell malignancy, and they suggest the exploitation of clinically available anti-RANKL compounds for CLL treatment.

Blood ◽  
2004 ◽  
Vol 103 (12) ◽  
pp. 4389-4395 ◽  
Author(s):  
Freda K. Stevenson ◽  
Federico Caligaris-Cappio

Abstract The finding that chronic lymphocytic leukemia (CLL) consists of 2 clinical subsets, distinguished by the incidence of somatic mutations in the immunoglobulin (Ig) variable region (V) genes, has clearly linked prognosis to biology. Antigen encounter by the cell of origin is indicated in both subsets by selective but distinct expression of V genes, with evidence for continuing stimulation after transformation. The key to distinctive tumor behavior likely relates to the differential ability of the B-cell receptor (BCR) to respond. Both subsets may be undergoing low-level signaling in vivo, although analysis of blood cells limits knowledge of critical events in the tissue microenvironment. Analysis of signal competence in vitro reveals that unmutated CLL generally continues to respond, whereas mutated CLL is anergized. Differential responsiveness may reflect the increased ability of post-germinal center B cells to be triggered by antigen, leading to long-term anergy. This could minimize cell division in mutated CLL and account for prognostic differences. Unifying features of CLL include low responsiveness, expression of CD25, and production of immunosuppressive cytokines. These properties are reminiscent of regulatory T cells and suggest that the cell of origin of CLL might be a regulatory B cell. Continuing regulatory activity, mediated via autoantigen, could suppress Ig production and lead to disease-associated hypogammaglobulinemia. (Blood. 2004;103:4389-4395)


Hematology ◽  
2011 ◽  
Vol 2011 (1) ◽  
pp. 96-103 ◽  
Author(s):  
Jan A. Burger

Abstract Intrinsic factors such as genetic lesions, anti-apoptotic proteins, and aberrant signaling networks within leukemia cells have long been the main focus of chronic lymphocytic leukemia (CLL) research. However, over the past decade, it became increasingly clear that external signals from the leukemia microenvironment make pivotal contributions to disease progression in CLL and other B-cell malignancies. Consequently, increasing emphasis is now placed on exploring and targeting the CLL microenvironment. This review highlights critical cellular and molecular pathways of CLL-microenvironment cross-talk. In vitro and in vivo models for studying the CLL microenvironment are discussed, along with their use in searching for therapeutic targets and in drug testing. Clinically, CXCR4 antagonists and small-molecule antagonists of B cell receptor (BCR)-associated kinases (spleen tyrosine kinase [Syk], Bruton's tyrosine kinase [Btk], and PI3Kδ) are the most advanced drugs for targeting specific interactions between CLL cells and the miocroenvironment. Preclinical and first clinical evidence suggests that high-risk CLL patients can particularly benefit from these alternative agents. These findings indicate that interplay between leukemia-inherent and environmental factors, nature and nurture determines disease progression in CLL.


Blood ◽  
1984 ◽  
Vol 64 (3) ◽  
pp. 667-671 ◽  
Author(s):  
F Lauria ◽  
D Raspadori ◽  
S Tura

Abstract Abnormalities of T lymphocytes in B cell chronic lymphocytic leukemia (B-CLL) have been extensively documented by several immunologic investigations. Following recent studies pointing to the favorable effect of TP-1, a partially purified extract of calf thymus, on the T cell-mediated immunity of several diseases, including Hodgkin's disease, we have used monoclonal antibodies and the enriched T lymphocytes of 16 untreated B-CLL patients to evaluate the proportion of T cell subsets before and after the administration of TP-1. In addition, the proliferative response to phytohemagglutinin (PHA) and the helper function in a pokeweed mitogen (PWM) system were assessed. In ten cases, the effect of TP-1 was also studied in vitro by evaluating the same parameters before and after incubation of B-CLL T cells with the drug. The study demonstrated that in vivo administration of TP-1 increases significantly (P less than .001) the proportion of the defective helper/inducer T cell population (OKT4-positive cells) in B-CLL, leading to a near normal OKT4/OKT8 ratio. Furthermore, the improved phenotypic profile was accompanied by an increased proliferative response to PHA and, in particular, by a significant increase (P less than .01) of T helper capacity; this increase was, however, insufficient to enable the normalization of the serum immunoglobulin levels. The in vitro incubation of B-CLL T lymphocytes did not succeed in producing significant modifications in distribution and function.


Hematology ◽  
2012 ◽  
Vol 2012 (1) ◽  
pp. 88-96 ◽  
Author(s):  
Adrian Wiestner

Abstract Chronic lymphocytic leukemia (CLL) is a malignancy of mature B cells that depend on host factors in the tissue microenvironment for survival and proliferation. In vitro, CLL cells rapidly undergo apoptosis unless microenvironmental factors are provided that support their survival. Signaling pathways activated in the microenvironment in vivo include the B-cell receptor (BCR) and NF-κB pathways. Thus, CLL is a disease “addicted to the host” and is dependent on pathways that promote normal B-cell development, expansion, and survival; this is particularly true in the case of the BCR signaling cascade. Small-molecule inhibitors of kinases that are essential for BCR signal transduction abrogate the stimulating effects of the microenvironment on CLL cells. The orally administered tyrosine kinase inhibitors fostamatinib and ibrutinib and the phosphatidylinositol 3-kinase inhibitor GS-1101 have induced impressive responses in relapsed and refractory CLL patients, mostly with moderate side effects. Reductions in lymphadenopathy and splenomegaly are seen within weeks and are frequently accompanied by a transient rise in absolute lymphocyte count that is asymptomatic and probably the result of changes in CLL cell trafficking. This review discusses the biologic basis for kinase inhibitors as targeted therapy of CLL and summarizes the exciting early clinical experience with these agents.


Blood ◽  
2012 ◽  
Vol 120 (24) ◽  
pp. 4684-4691 ◽  
Author(s):  
Adrian Wiestner

AbstractChronic lymphocytic leukemia (CLL) is a malignancy of mature B cells that depend on host factors in the tissue microenvironment for survival and proliferation. In vitro, CLL cells rapidly undergo apoptosis unless microenvironmental factors are provided that support their survival. Signaling pathways activated in the microenvironment in vivo include the B-cell receptor (BCR) and NF-κB pathways. Thus, CLL is a disease “addicted to the host” and is dependent on pathways that promote normal B-cell development, expansion, and survival; this is particularly true in the case of the BCR signaling cascade. Small-molecule inhibitors of kinases that are essential for BCR signal transduction abrogate the stimulating effects of the microenvironment on CLL cells. The orally administered tyrosine kinase inhibitors fostamatinib and ibrutinib and the phosphatidylinositol 3-kinase inhibitor GS-1101 have induced impressive responses in relapsed and refractory CLL patients, mostly with moderate side effects. Reductions in lymphadenopathy and splenomegaly are seen within weeks and are frequently accompanied by a transient rise in absolute lymphocyte count that is asymptomatic and probably the result of changes in CLL cell trafficking. This review discusses the biologic basis for kinase inhibitors as targeted therapy of CLL and summarizes the exciting early clinical experience with these agents.


Blood ◽  
2012 ◽  
Vol 119 (5) ◽  
pp. 1182-1189 ◽  
Author(s):  
Sabine Ponader ◽  
Shih-Shih Chen ◽  
Joseph J. Buggy ◽  
Kumudha Balakrishnan ◽  
Varsha Gandhi ◽  
...  

Abstract B-cell receptor (BCR) signaling is a critical pathway in the pathogenesis of several B-cell malignancies, including chronic lymphocytic leukemia (CLL), and can be targeted by inhibitors of BCR-associated kinases, such as Bruton tyrosine kinase (Btk). PCI-32765, a selective, irreversible Btk inhibitor, is a novel, molecularly targeted agent for patients with B-cell malignancies, and is particularly active in patients with CLL. In this study, we analyzed the mechanism of action of PCI-32765 in CLL, using in vitro and in vivo models, and performed correlative studies on specimens from patients receiving therapy with PCI-32765. PCI-32765 significantly inhibited CLL cell survival, DNA synthesis, and migration in response to tissue homing chemokines (CXCL12, CXCL13). PCI-32765 also down-regulated secretion of BCR-dependent chemokines (CCL3, CCL4) by the CLL cells, both in vitro and in vivo. In an adoptive transfer TCL1 mouse model of CLL, PCI-32765 affected disease progression. In this model, PCI-32765 caused a transient early lymphocytosis, and profoundly inhibited CLL progression, as assessed by weight, development, and extent of hepatospenomegaly, and survival. Our data demonstrate that PCI-32765 effectively inhibits CLL cell migration and survival, possibly explaining some of the characteristic clinical activity of this new targeted agent.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 2-3
Author(s):  
Elisa Ten Hacken ◽  
Tomasz Sewastianik ◽  
Robert A. Redd ◽  
Geoffrey Fell ◽  
Mohamed Uduman ◽  
...  

Although we have gained a wealth of knowledge from large-scale DNA sequencing studies across blood cancers, we still know little about the functional interplay of the discovered putative drivers in the generation of chronic lymphocytic leukemia (CLL) and its transformation into Richter's syndrome (RS). We have previously observed that CRISPR-Cas9 in vivo B-cell editing of common CLL loss-of-function (LOF) lesions (Atm, Trp53, Chd2, Birc3, Mga, Samhd1) can increase in vitro B cell fitness, but is not sufficient to sustain in vivo B cell survival after 12 months post-transplant. We therefore asked whether combinatorial introduction of mutations was required for CLL development. To this end, we generated transplant lines by in vitro engineering of early stem and progenitor cells (Lineage- Sca-1+ c-kit+ [LSK]) from MDR-/-Cd19-Cas9 donor mice (animals expressing Cas9-GFP in a B-cell restricted fashion and the leukemogenic homozygous MDR lesion, mimicking del(13q)) with pooled lentivirus expressing sgRNAs against the 6 genes of interest and the mCherry marker. Engineered LSKs were then re-transplanted into sub-lethally irradiated immune-competent CD45.1 or immune-deficient NSG recipients (n=35/strain). Parallel control cohorts of equal size were generated by transducing LSKs with a pool of 6 non-targeting sgRNAs. Disease development (B220+CD5+Igk+ cells) was assessed by flow cytometric analysis of bi-monthly peripheral bleeds, starting at 4 months post-transplant, and flow cytometry/IHC were utilized to classify tumors at euthanasia. Analysis of PCR-based targeted NGS of peripheral blood edited tumor cells (GFP+mCherry+) was performed utilizing CRISPResso software to assess presence of the 6 LOF mutations. We observed incidence of circulating CLL in 28/35 (80%) CD45.1 and 27/35 (77%) NSG mice, whereas only 5/35 (14%) CD45.1 and 4/35 (11.4%) NSG from the non-targeting control cohort developed CLL-like disease (P<0.0001, both strains), consistent with the expected penetrance of MDR. Analysis of lymphoid organs at euthanasia allowed identification of 3 disease presentations, namely 'pattern A' (CLL-like), 'pattern B' (co-presence of CLL and RS), and 'pattern C' (RS-like). Pattern C was predominantly of DLBCL histology (with 1 instance of HL in CD45.1), and characterized by circulating large cell disease and increased tumor cell infiltration of spleen, bone marrow and lymph nodes (P<0.001, all compartments), compared to pattern A. Disease onset (P=0.005) and overall survival (P<0.0001) was shorter in NSG recipients compared to CD45.1, suggesting a role for the immune-microenvironment in controlling progression in CD45.1 hosts. To determine the genetic composition of the 55 leukemias/lymphomas (n=22, 11 and 22, with patterns A, B and C), we interrogated the LOF mutational burden at euthanasia. We observed a median number of 4 LOF mutations (range:1-6), and a high overall frequency of Trp53 lesions (58%). The other 5 drivers were less prevalent (Mga: 26%; Chd2: 21%; Samhd1: 17%; Birc3 and Atm: 13%). Trp53 mutations were predominantly clonal (≥90% indels, P<0.0001), while Birc3 and Atm were most commonly subclonal (<90%, P≤0.05). We observed increased numbers of clonal drivers in pattern B/C, as compared to pattern A (P≤0.01). Trp53 and Mga were enriched in B/C tumors (P<0.05) and frequently co-occurred, consistent with the recurrent TP53 losses and MYC gains observed in human RS (Mga is a negative regulator of MYC signaling). In 9 mice, either concomitant presence of large and small cells was identifiable in blood or sequential CLL and RS samples were available; we observed both linear (5/9) and branched (4/9) evolution, with RS cells acquiring mutations in DNA-damage response genes in addition to Trp53 (i.e. Atm and/or Samhd1), which may underlie increased genomic instability, a typical feature of human RS. In conclusion, we demonstrate that combinatorial in vivo modeling of CLL-LOF mutations leads not only to CLL development, but also to RS, thus establishing a faithful framework for analysis of genetic and microenvironmental determinants of disease transformation. We are now interrogating genome-wide mutational patterns and clonal architecture of CLL vs. RS, while analyzing their microenvironmental composition. These novel models provide a unique platform to discern critical insights into RS pathogenesis and to discover RS-specific therapeutic vulnerabilities. Disclosures Clement: Edilytics: Current Employment, Current equity holder in private company. Wu:Pharmacyclics: Research Funding; BionTech: Current equity holder in publicly-traded company.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2882-2882
Author(s):  
Sarah E. M. Herman ◽  
Paul M. Barr ◽  
Erin M. McAuley ◽  
Delong Liu ◽  
Jonathan W. Friedberg ◽  
...  

Abstract Abstract 2882 B-cell receptor (BCR) signaling contributes to the pathogenesis of chronic lymphocytic leukemia (CLL). Spleen tyrosine kinase (SYK) activated directly downstream of the BCR is essential for the induction of proliferation and survival pathways. The SYK inhibitor fostamatinib disrupts BCR signaling and was the first such inhibitor to show significant clinical activity in patients with mature B-cell malignancies. Fostamatinib has been shown to both induce apoptosis in unstimulated CLL cells as well as to inhibit BCR induced anti-apoptotic signals in vitro (Gobessi et al., 2009; Quiroga et al., 2009). Similarly, using the Eμ-TCL1 transgenic mouse model, fostamatinib has been shown to inhibit the growth of malignant B-cells without significant alteration of normal B-cells (Suljagic et al., 2010). In the first phase I/II clinical trial investigating fostamatinib in relapsed B-cell non-Hodgkin's lymphoma (NHL) and CLL, clinical efficacy was observed in a variety of histologies with the highest response rate in CLL/SLL patients (Friedberg et al., 2010). Eleven CLL/SLL patients enrolled in this trial donated cellular material for correlative studies. Using these primary tumor samples, we evaluated the effects of fostamatinib on CLL cells in vivo after one cycle of treatment. We first validated the on-target effect of fostamatinib by using quantitative RT-PCR to measure expression of validated pathway specific gene signatures. Fostamatinib greatly down-regulated 12/12 evaluated BCR signature genes and significantly reduced the BCR gene signature score (computed as the average expression of the pathway specific genes; p=.002) Effective inhibition of BCR signaling was confirmed by a significant reduction in the phosphorylation of both BTK and ERK; two key BCR signaling molecules located downstream of SYK activation. Interestingly, BCR signaling was inhibited in CLL cells from all patients regardless of response to therapy. We next expanded our analysis to look at NF-κB and MYC gene signatures. We found that 11/11 representative NF-κB signature genes and 5/5 MYC signature genes were also down-regulated resulting in a significant reduction in both gene signature scores (p=.004 and p=.020, respectively). Confirming these results, we also observed a significant reduction in JUNB (p<.001) and MYC (p=.026) at the protein level. Interestingly, the reduction in NF-κB and MYC signature scores was highly correlated with the degree of reduction in BCR signaling suggesting that these pathways are linked. In addition to changes in the gene signatures we also observed a significant reduction in the cellular activation immunephenotype; CD69 and CD86 expression were significantly reduced by fostamatinib (p=.033 and p=.004, respectively). Further, we found that CD38 (an activation marker with prognostic significance) was also reduced on treatment although not to a significant extent. Finally, fostamatinib significantly reduced tumor proliferation as determined by the percentage of CLL cells expressing Ki67 (p=.005). Eight of the 11 patients in this study achieved a clinically significant response; interestingly however, the 3 non-responders demonstrated significantly brighter CD38 expression with an MFI up to 9-times the CD38 MFI in responders. A possible role of CD38 as a biomarker for response should be further explored in patients treated with BCR directed kinase inhibitors. In conclusion, fostamatinib and other inhibitors of BCR-related kinases constitute a major advance in the treatment of CLL. In vitro data with these compounds suggests that interruption of BCR signaling and survival pathways activated in the tissue microenvironments are likely responsible for the observed clinical response as only a moderate direct induction of apoptosis is seen in vitro. Here we demonstrate that inhibition of BCR-mediated signaling by fostamatinib results in a reduction in CLL proliferation and activation in vivo. Together these data provide a blueprint to further study the mechanism of action and resistance mechanisms of not only fostamatinib but also other BCR targeted therapeutics. This work was supported in part by the Intramural Research Program of the National, Heart, Lung and Blood Institute and by the University of Rochester SPORE in lymphoma P50 CA13080503, Rigel and the James P. Wilmot Foundation. Disclosures: Friedberg: Rigel: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document