scholarly journals Effect of Diameter, Length, and Chirality on the Properties of Silicon Nanotubes

Author(s):  
Mohsen Motamedi ◽  
Erphan Safdari

Abstract The mechanical properties of nanostructures are a researcher's favorite topics. In the meantime, the mechanical and physical properties of the two dimensional structures and the nanotubes have attracted greater attention due to their wide application. Si (Si) nanotubes are structures consisting of Si atoms that are aligned as honeycombs (hexagonal). This structure has created some special properties in Si nanotubes. In this paper, Young’s modulus values and stress strain diagrams of Si nanotubes are investigated using molecular dynamics method and the Tersoff potential. Then, the changes effect of size and dimension was investigated for a closer look. For this purpose, the effect of nanotube diameter, length, and chirality shift from zigzag to armchair were studied. The results showed that the fracture stress of nanotube decreased with increasing the length of Si nanotube. It was also shown that the armchair structure was stronger than the zigzag. The effect of diameter change on the mechanical properties was also investigated and it was observed that no specific order could be found between the diameter changes with the Si nanotube strength. The results were in good agreement with other studies.

2008 ◽  
Vol 139 ◽  
pp. 23-28 ◽  
Author(s):  
Simone Giusepponi ◽  
Massimo Celino ◽  
Fabrizio Cleri ◽  
Amelia Montone

We studied the atomic-level structure of a model Mg-MgH2 interface by means of the Car-Parrinello molecular dynamics method (CPMD). The interface was characterized in terms of total energy calculations, and an estimate of the work of adhesion was given, in good agreement with experimental results on similar systems. Furthermore, the interface was studied in a range of temperatures of interest for the desorption of hydrogen. We determined the diffusivity of atomic hydrogen as a function of the temperature, and give an estimate of the desorption temperature.


RSC Advances ◽  
2018 ◽  
Vol 8 (53) ◽  
pp. 30354-30365 ◽  
Author(s):  
Shahriar Muhammad Nahid ◽  
Shahriar Nahian ◽  
Mohammad Motalab ◽  
Tawfiqur Rakib ◽  
Satyajit Mojumder ◽  
...  

Inclusion of auxiliary cracks increases the fracture stress of silicene nanosheets with a pre existing crack.


2014 ◽  
Vol 14 (02) ◽  
pp. 1350057 ◽  
Author(s):  
R. D. FIROUZ-ABADI ◽  
H. MOHAMMADKHANI ◽  
H. AMINI

An efficient hybrid modal-molecular dynamics method is developed for the vibration analysis of large scale nanostructures. Using the reduced order method, presented in this paper, linear and nonlinear vibrations of a suspended graphene nanoribbon (GNR) carrying an electric current in a harmonic magnetic field are investigated. The resonance frequencies as well as the nonlinear vibration response obtained by the present technique and direct molecular dynamic simulations are in very good agreement. Also, the obtained results illustrate the hardening behavior of nonlinear vibrations which is diminished by stretching the GNR.


2021 ◽  
Vol 13 (2) ◽  
pp. 111-118
Author(s):  
Yury D. Fomin ◽  
◽  
Elena N. Tsiok ◽  
Anton B. Teslyuk ◽  
Valentin N. Ryzhov ◽  
...  

Using a molecular dynamics method water-like anomalies in a core-softened system depending on the potential parameters and space dimension were investigated. We have examined the anomalies of density, diffusion and structure and have shown that the sequence of anomalous regions cardinally depends on the repulsive step width and space dimension. Thus, in a three-dimensional (3D) system with small values of the step width the sequence of anomalous regions is the same as in water, whereas in a two-dimensional (2D) system – as in liquid silica. With an increase in the step width, an inversion of the regions of the diffusion anomaly and of the density anomaly is observed. Such an unusual sequence of anomalous regions different from water and liquid silica is exclusively caused by the step width and does not depend on the space dimension.


2019 ◽  
Vol 45 (1) ◽  
pp. 34-40
Author(s):  
Kensuke HATA ◽  
Masato SAKAGUCHI ◽  
Ryuta KITAMURA ◽  
Satoshi KOBAYASHI ◽  
Shinji OGIHARA

2019 ◽  
Vol 1 (8) ◽  
pp. 2891-2900 ◽  
Author(s):  
Ning Liu ◽  
Mathew Becton ◽  
Liuyang Zhang ◽  
Keke Tang ◽  
Xianqiao Wang

Mechanical properties, especially negative Poisson's, of 2D sinusoidal lattice metamaterials based on 2D materials depends highly on both geometrical factors and tuned mechanical anisotropy according to our generic coarse-grained molecular dynamics simulations.


2021 ◽  
Author(s):  
JOSH KEMPPAINEN ◽  
IVAN GALLEGOS ◽  
PRATHAMESH DESHPANDE ◽  
JACOB GISSINGER ◽  
GREGORY ODEGARD

Furan resins can be used as precursor resin for Carbon-Carbon Composites but has also been used in adhesives, acid/corrosion resistant materials, and as an alternative fuel precursor [15]. This paper contains the most current understanding of the structure of furan resin and a Molecular Dynamics workflow for computationally simulating its polymerization with the 'fix bond/react' command implemented in LAMMPS. The predicted mechanical properties of the polymerized resin are in good agreement with the literature values.


Sign in / Sign up

Export Citation Format

Share Document