scholarly journals A high-resolution, spatially explicit estimate of fossil-fuel CO2 emissions from the Tokyo Metropolis, Japan

2020 ◽  
Author(s):  
Richao Cong ◽  
Makoto Saito ◽  
Tetsuo Fukui ◽  
Ryuichi Hirata ◽  
Akihiko Ito

Abstract Background: The quantification of urban greenhouse gas (GHG) emissions is an important task in combating climate change. Emission inventories that include spatially explicit emission estimates facilitate the accurate tracking of emission changes, identification of emission sources, and formulation of policies for climate-change mitigation. Many currently available gridded emission estimates are based on the disaggregation of country- or state-wide emission estimates, which may be useful in describing city-wide emissions but are of limited value in tracking changes at subnational levels. Urban GHG emissions should therefore be quantified with a true bottom-up approach. Results: Multi-resolution, spatially explicit estimates of fossil-fuel carbon dioxide (FFCO2 ) emissions from the Tokyo Metropolis, Japan, were derived. Spatially explicit emission data were collected for point (e.g., power plants and waste incinerators), line (mostly traffic), and area (e.g., residential and commercial areas) sources. Emissions were mapped on the basis of emission rates calculated for source locations. Activity, emissions, and spatial data were integrated, and the results were visualized using a geographic information system approach. Conclusions: The annual total FFCO2 emissions from the Tokyo Metropolis in 2014 were 44,855 Gg CO2 , with the road-transportation sector (16,323 Gg CO2 ) accounting for 36.4% of the total. Spatial emission patterns were verified via a comparison with the East Asian Air Pollutant Emission Grid Database for Japan (EAGrid-Japan), which demonstrated the applicability of this methodology to other prefectures and therefore the entire country.

2020 ◽  
Author(s):  
Richao Cong ◽  
Makoto Saito ◽  
Tomohiro Oda ◽  
Tetsuo Fukui ◽  
Ryuichi Hirata ◽  
...  

Abstract Background: The quantification of urban greenhouse gas (GHG) emissions is an important task in combating climate change. Emission inventories that include spatially explicit emission estimates facilitate the accurate tracking of emission changes, identification of emission sources, and formulation of policies for climate-change mitigation. Many currently available gridded emission estimates are based on the disaggregation of country- or state-wide emission estimates, which may be useful in describing city-wide emissions but are of limited value in tracking changes at subnational levels. Urban GHG emissions should therefore be quantified with a true bottom-up approach. Results: Multi-resolution, spatially explicit estimates of fossil-fuel carbon dioxide (FFCO2) emissions from the Tokyo Metropolis, Japan, were derived. Spatially explicit emission data were collected for point (e.g., power plants and waste incinerators), line (mostly traffic), and area (e.g., residential and commercial areas) sources. Emissions were mapped on the basis of emission rates calculated for source locations. Activity, emissions, and spatial data were integrated, and the results were visualized using a geographic information system approach. Conclusions: The annual total FFCO2 emissions from the Tokyo Metropolis in 2014 were 44,855 Gg CO2, with the road-transportation sector (16,323 Gg CO2) accounting for 36.4% of the total. Spatial emission patterns were verified via a comparison with the East Asian Air Pollutant Emission Grid Database for Japan (EAGrid-Japan), which demonstrated the applicability of this methodology to other prefectures and therefore the entire country.


2021 ◽  
Author(s):  
Richao Cong ◽  
Makoto Saito ◽  
Tetsuo Fukui ◽  
Ryuichi Hirata ◽  
Akihiko Ito

Abstract Background: The quantification of urban greenhouse gas (GHG) emissions is an important task in combating climate change. Emission inventories that include spatially explicit emission estimates facilitate the accurate tracking of emission changes, identification of emission sources, and formulation of policies for climate-change mitigation. Many currently available gridded emission estimates are based on the disaggregation of country- or state-wide emission estimates, which may be useful in describing city-wide emissions but are of limited value in tracking changes at subnational levels. Urban GHG emissions should therefore be quantified with a true bottom-up approach. Results: Multi-resolution, spatially explicit estimates of fossil-fuel carbon dioxide (FFCO2) emissions from the Tokyo Metropolis, Japan, were derived. Spatially explicit emission data were collected for point (e.g., power plants and waste incinerators), line (mostly traffic), and area (e.g., residential and commercial areas) sources. Emissions were mapped on the basis of emission rates calculated for source locations. Activity, emissions, and spatial data were integrated, and the results were visualized using a geographic information system approach.Conclusions: The annual total FFCO2 emissions from the Tokyo Metropolis in 2014 were 43,916 Gg CO2, with the road-transportation sector (16,323 Gg CO2) accounting for 37.2% of the total. Spatial emission patterns were verified via a comparison with the East Asian Air Pollutant Emission Grid Database for Japan (EAGrid-Japan) and the Open‐source Data Inventory for Anthropogenic CO2 (ODIAC), which demonstrated the applicability of this methodology to other prefectures and therefore the entire country.


2020 ◽  
Author(s):  
Richao Cong ◽  
Makoto Saito ◽  
Tetsuo Fukui ◽  
Ryuichi Hirata ◽  
Akihiko Ito

Abstract Background: The quantification of urban greenhouse gas (GHG) emissions is an important task in combating climate change. Emission inventories that include spatially explicit emission estimates facilitate the accurate tracking of emission changes, identification of emission sources, and formulation of policies for climate-change mitigation. Many currently available gridded emission estimates are based on the disaggregation of country- or state-wide emission estimates, which may be useful in describing city-wide emissions but are of limited value in tracking changes at subnational levels. Urban GHG emissions should therefore be quantified with a true bottom-up approach. Results: Multi-resolution, spatially explicit estimates of fossil-fuel carbon dioxide (FFCO2) emissions from the Tokyo Metropolis, Japan, were derived. Spatially explicit emission data were collected for point (e.g., power plants and waste incinerators), line (mostly traffic), and area (e.g., residential and commercial areas) sources. Emissions were mapped on the basis of emission rates calculated for source locations. Activity, emissions, and spatial data were integrated, and the results were visualized using a geographic information system approach.Conclusions: The annual total FFCO2 emissions from the Tokyo Metropolis in 2014 were 43,916 Gg CO2, with the road-transportation sector (16,323 Gg CO2) accounting for 37.2% of the total. Spatial emission patterns were verified via a comparison with the East Asian Air Pollutant Emission Grid Database for Japan (EAGrid-Japan) and the Open‐source Data Inventory for Anthropogenic CO2 (ODIAC), which demonstrated the applicability of this methodology to other prefectures and therefore the entire country.


2020 ◽  
Author(s):  
Seifu Woldemichael Busho ◽  
Daniel Alemayehu

Abstract Climate change has emerged as a very important threat to economic development, atmosphere, and public health. One of the driving factors for global climate change was road transportation. therefore, this sector needs a responsibility of reducing its effect on the environment. this study finds ways to mitigate climate change impacts on environment especially greenhouse gas emissions and other selected air pollutants by anew navigation concept called eco route by applying a 3D Eco -Routing Model to reduce the environmental footprints of road transports in Addis Ababa city for distribution vehicles. The applied model in this study considered the road gradient, varying velocity or speed of vehicles, and weight of vehicles to evaluate gradient effects on consumption of fuel, CO 2 and also other air pollutants emission, the model is applied in three scenarios within different vehicle weight range and three different cases in the city of Addis Ababa, political capital of Africa, The attained results imply eco-routes emission Reduction potentials up to 39.81% from fuel and CO 2 and 25.65% from other air pollutant in the tested scenarios. The results showed that Eco Routes have the ability of reducing Fuel consumption, CO 2 and other air pollutant emission rate. Such potentials of eco routes make them an ecological solution for a future sustainable transportation in Addis Ababa City. This study recommends the use of Eco Routes, rather than Fastest and Shortest Routes, where significant road gradients exist.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5716
Author(s):  
Jiun-Horng Tsai ◽  
Shih-Hsien Chen ◽  
Shen-Fong Chen ◽  
Hung-Lung Chiang

This study is an investigation of air pollutant emission abatement in the electricity generation sector from fossil-fuel power plants in Taiwan in 2014 and 2018. PM concentrations are determined by the results of regular tests, while SOx and NOx are determined by continuous emission monitoring systems (CEMS) of flue gas from power plants. The results indicate that electricity generation from fossil-fuel power plants increased by 13.8% from 2014 to 2018. However, emissions of air pollutants from fossil-fuel power plants declined during this period. The results indicate that the annual emissions of SOx, NOx, and PM were 40,826, 59,196, and 5363 tons per year (TPY), respectively, in 2014. The emissions decreased to 30,097 TPY (28% reduction) for SOx, 48,530 TPY (18% reduction) for NOx, and 4496 TPY (16% reduction) for PM in 2018. The ensemble mean values of each air pollutant emission factor also decreased significantly. SOx emissions decreased from 0.2443 to 0.1583 mg/kWh (35% reduction). NOx emissions decreased from 0.3542 to 0.2552 g/kWh (28% reduction). PM emissions decreased from 0.0321 to 0.0236 mg/kWh (26.5% reduction). The results indicated that phasing out of high-pollutant generating units and switching the fuel from coal to natural gas could abate the emissions of SOx and PM, and NOx emissions could be abated by introducing control devices. In addition, new power generation sectors will be constructed and equipped with ultra-low emission control systems to reduce air pollution and create a cleaner and healthier electricity generation system in Taiwan.


2020 ◽  
Author(s):  
Seifu Woldemichael Busho ◽  
Daniel Alemayehu

Abstract BackgroundClimate change has emerged as a very important threat to economic development, atmosphere, and public health. One of the driving factors behind global climate change is road transportation. Therefore, the sector needs to take on the responsibility of addressing its negative impacts on the environment. This study seeks to find ways of mitigating the impacts of climate change. It pays particular attention to greenhouse gas emissions and other selected air pollutants based on anew navigation concept called eco-route, a3D Eco -Routing transportation planning method that can help reduce the environmental footprints of Road transports in Addis Ababacity for distribution vehicles. The model applied in this study considered the road gradient, varying velocity or speed of vehicles, and weight of vehicles to evaluate gradient effects on consumption of fuel, CO2 and also other air pollutants emission. The model is applied in three scenarios within different vehicle weight ranges and three different cases in Addis Ababa.ResultThe finds of the study imply the eco-routes emission reduction potential from fuel and CO2 in the tested scenarios is up to 39.81% while other air pollutants account for 25.65%.The results prove that Eco Routes have the ability of reducing Fuel consumption, CO2 and other air pollutant emission rate.ConclusionsEco routes have the potential to provide sustainable transportation opportunities for Addis Ababa city. This study recommends that eco-routes should be used instead of Shortest and Fastest routes where significant road gradients exist.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5348
Author(s):  
Waqas Ahmed ◽  
Jamil Ahmed Sheikh ◽  
M. A. Parvez Mahmud

Green energy by PV systems reduces the dependence on fossil fuel-based power plants. Maximizing green energy to meet the demand reduces the burden on conventional power plants, hence lesser burning and greenhouse gases (GHG) emissions. For this purpose, this study draws a relationship between tracking schemes of the PV systems to GHG mitigation potential. The best fit location for detailed analyses is selected among the 15 most populous cities of Australia. The solar radiation potential is increased to 7.78 kWh/m2/d through dual axes tracking compared to 7.54, 6.82, 5.94, 5.73 kWh/m2/d through the one axis, azimuth based, fixed-tilted, and fixed-horizontal surface schemes, respectively. Through the dual axes tracking scheme, a 1 MW PV system per annum energy output avoids the burning of 796,065.3 L of gasoline, 4308.7 barrels of crude oil which is equal to the mitigation of 1852.7 tCO2 equivalent GHGs. Concisely, the PV system, through its green energy output, can avoid the release of greenhouse gases from fossil-fuel plants to tackle climate change more effectively.


Author(s):  
Xiliang Hong ◽  
Jianhong Chen ◽  
Deren Sheng ◽  
Wei Li

Owing to the growing environmental concerns, super-critical and ultra-supercritical coal-fired power plants dominate the electricity generation with the demand of near-zero air pollutant emission in China. Therefore, it is highly expected to assess the environmental impact and optimize the design at global and local levels. Exergoenvironmental analysis is a valid approach to investigate the formation of environmental impacts (EIs) associated with energy conversion systems at the component level. It generates information crucial for designing systems with a lower overall environmental impact, based on life cycle assessment (LCA) and exergy analysis. A 600 MW supercritical coal-fired system with and without dust, SO2 and NOx mitigation controls was analyzed. Heat transfer in the boiler, condenser (CND), low pressure cylinder (LP), air preheater (APH) show high potential to decrease the environmental impact due to high exergy destructions. The deaerator (DEA), induced draft fan (IDF), forced draft fan (FDF) should be focussed on construction design and manufacturing optimization. Purification units reveal high benefit for reducing EI produced by coal combustion, but there is a large space for the EI saving for it. The specific EI of electricity in China is much greater than European.


Author(s):  
Farshid Zabihian ◽  
Alan S. Fung

Nowadays, the global climate change has been a worldwide concern and the greenhouse gases (GHG) emissions are considered as the primary cause of that. The United Nations Conference on Environment and Development (UNCED) divided countries into two groups: Annex I Parties and Non-Annex I Parties. Since Iran and all other countries in the Middle East are among Non-Annex I Parties, they are not required to submit annual GHG inventory report. However, the global climate change is a worldwide phenomenon so Middle Eastern countries should be involved and it is necessary to prepare such a report at least unofficially. In this paper the terminology and the methods to calculate GHG emissions will first be explained and then GHG emissions estimates for the Iranian power plants will be presented. Finally the results will be compared with GHG emissions from the Canadian electricity generation sector. The results for the Iranian power plants show that in 2005 greenhouse gas intensity for steam power plants, gas turbines and combined cycle power plants were 617, 773, and 462 g CO2eq/kWh, respectively with the overall intensity of 610 g CO2eq/kWh for all thermal power plants. This GHG intensity is directly depend on efficiency of power plants. Whereas, in 2004 GHG intensity for electricity generation sector in Canada for different fuels were as follows: Coal 1010, refined petroleum products 640, and natural gas 523 g CO2eq/kWh, which are comparable with same data for Iran. For average GHG intensity in the whole electricity generation sector the difference is much higher: Canada 222 vs. Iran 610g CO2eq/kWh. The reason is that in Canada a considerable portion of electricity is generated by hydro-electric and nuclear power plants in which they do not emit significant amount of GHG emissions. The average GHG intensity in electricity generation sector in Iran between 1995 and 2005 experienced 13% reduction. While in Canada at the same period of time there was 21% increase. However, the results demonstrate that still there are great potentials for GHG emissions reduction in Iran’s electricity generation sector.


Author(s):  
Jian Ma ◽  
Oliver Hemmers

A thermoeconomic analysis of microalgae co-firing process for fossil fuel-fired power plants is studied. A process with closed photobioreactor and artificial illumination is evaluated for microalgae cultivation, due to its simplicity with less influence from climate variations. The results from this process would contribute to further estimation of process performance and investment. The concept of co-firing (coal-microalgae or natural gas-microalgae) includes the utilization of CO2 from power plant for microalgal biomass culture and oxy-combustion of using oxygen generated by biomass to enhance the combustion efficiency. As it reduces CO2 emission by recycling it and uses less fossil fuel, there are concomitant benefits of reduced GHG emissions. The by-products (oxygen) of microalgal biomass can be mixed with air or recycled flue gas prior to combustion, which will have the benefits of lower nitrogen oxide concentration in flue gas, higher efficiency of combustion, and not too high temperature (avoided by available construction materials) resulting from coal combustion in pure oxygen. Two case studies show that there are average savings about $0.386 million/MW/yr and $0.323 million/MW/yr for coal-fired and natural gas-fired power plants, respectively. These costs saving are economically attractive and demonstrate the promise of microalgae technology for reducing greenhouse gas (GHG) emission.


Sign in / Sign up

Export Citation Format

Share Document